IDEAS home Printed from https://ideas.repec.org/a/sae/vision/v11y2007i3p11-23.html
   My bibliography  Save this article

Tests of Technical Analysis in India

Author

Listed:
  • Sanjay Sehgal
  • Meenakshi Gupta

Abstract

The study evaluates the economic feasibility of technical analysis in the Indian stock market. It discusses that technical indicators do not outperform Simple Buy and Hold strategy on net return basis for individual stocks. Technical indicators seem to do better during market upturns compared to market downturns. However, technical based trading strategies are not feasible vis-Ã -vis passive strategy irrespective of market cycle conditions. Technical indicators also do not provide economically significant profit for industry as well as economy based data. Combining fundamentals with technical information, we find, that technical indicators are more profitable for small stocks compared to big stocks and for high value stocks compared to low value stocks. However, the economic feasibility of fundamentals' based technical strategies is still questionable. Our results seem to confirm with the efficient market hypothesis.

Suggested Citation

  • Sanjay Sehgal & Meenakshi Gupta, 2007. "Tests of Technical Analysis in India," Vision, , vol. 11(3), pages 11-23, July.
  • Handle: RePEc:sae:vision:v:11:y:2007:i:3:p:11-23
    DOI: 10.1177/097226290701100303
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/097226290701100303
    Download Restriction: no

    File URL: https://libkey.io/10.1177/097226290701100303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Basu, Sanjoy, 1983. "The relationship between earnings' yield, market value and return for NYSE common stocks : Further evidence," Journal of Financial Economics, Elsevier, vol. 12(1), pages 129-156, June.
    2. Banz, Rolf W., 1981. "The relationship between return and market value of common stocks," Journal of Financial Economics, Elsevier, vol. 9(1), pages 3-18, March.
    3. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    4. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naveen Kumar Baradi & Sanjay Mohapatra, 2014. "The Use of Technical and Fundamental Analyses By Stock Exchange Brokers: Indian Evidence," Journal of Empirical Economics, Research Academy of Social Sciences, vol. 2(4), pages 190-203.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, March.
    2. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    3. Tania Morris & Jules Comeau, 2020. "Portfolio creation using artificial neural networks and classification probabilities: a Canadian study," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(2), pages 133-163, June.
    4. Doron Avramov & Guy Kaplanski & Avanidhar Subrahmanyam, 2022. "Postfundamentals Price Drift in Capital Markets: A Regression Regularization Perspective," Management Science, INFORMS, vol. 68(10), pages 7658-7681, October.
    5. Ma, Yao & Yang, Baochen & Su, Yunpeng, 2021. "Stock return predictability: Evidence from moving averages of trading volume," Pacific-Basin Finance Journal, Elsevier, vol. 65(C).
    6. Herv¨¦ Ndoume Essingone & Mouhamadou Saliou Diallo, 2019. "Risk and Return: The Case of Securities Listed on the West African Economic and Monetary Union Regional Exchange of Securities (BRVM)," Applied Economics and Finance, Redfame publishing, vol. 6(1), pages 97-108, January.
    7. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    8. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    9. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    10. Bell, Peter N, 2013. "New Testing Procedures to Assess Market Efficiency with Trading Rules," MPRA Paper 46701, University Library of Munich, Germany.
    11. Eero Pätäri & Timo Leivo, 2017. "A Closer Look At Value Premium: Literature Review And Synthesis," Journal of Economic Surveys, Wiley Blackwell, vol. 31(1), pages 79-168, February.
    12. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    13. Shi Yafeng & Tao Xiangxing & Shi Yanlong & Zhu Nenghui & Ying Tingting & Peng Xun, 2020. "Can Technical Indicators Provide Information for Future Volatility: International Evidence," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 53-66, February.
    14. Bohm, Volker & Wenzelburger, Jan, 2005. "On the performance of efficient portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 29(4), pages 721-740, April.
    15. Amir Hussain & Zia Obaid & Sajid Afridi, 2011. "Testing of CAPM in An Emerging Economy: A Case Study of Pakistan," Business & Economic Review, Institute of Management Sciences, Peshawar, Pakistan, vol. 3(2), pages 143-153, October.
    16. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.
    17. Stephan Schulmeister, 2000. "Technical Analysis and Exchange Rate Dynamics," WIFO Studies, WIFO, number 25857.
    18. Trifan, Emanuela, 2004. "Entscheidungsregeln und ihr Einfluss auf den Aktienkurs," Darmstadt Discussion Papers in Economics 131, Darmstadt University of Technology, Department of Law and Economics.
    19. Fernandez, Pablo, 2004. "Are calculated betas good for anything?," IESE Research Papers D/555, IESE Business School.
    20. Kun Xing & Honggang Li, 2024. "The profitability of interacting trading strategies from an ecological perspective," Annals of Finance, Springer, vol. 20(3), pages 377-394, September.

    More about this item

    Keywords

    Technical Analysis; Bull Period; Moving Average; Oscillators; Size and Value Strategies; JEL Classification Codes: C10; C12; G11; G14;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:vision:v:11:y:2007:i:3:p:11-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.