IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v46y2017i4p793-820.html
   My bibliography  Save this article

Understanding Individual-level Change Through the Basis Functions of a Latent Curve Model

Author

Listed:
  • Shelley A. Blozis
  • Jeffrey R. Harring

Abstract

Latent curve models have become a popular approach to the analysis of longitudinal data. At the individual level, the model expresses an individual’s response as a linear combination of what are called “basis functions†that are common to all members of a population and weights that may vary among individuals. This article uses differential calculus to define the basis functions of a latent curve model. This provides a meaningful interpretation of the unique and dynamic impact of each basis function on the individual-level response. Examples are provided to illustrate this sensitivity, as well as the sensitivity of the basis functions, to changes in the measure of time.

Suggested Citation

  • Shelley A. Blozis & Jeffrey R. Harring, 2017. "Understanding Individual-level Change Through the Basis Functions of a Latent Curve Model," Sociological Methods & Research, , vol. 46(4), pages 793-820, November.
  • Handle: RePEc:sae:somere:v:46:y:2017:i:4:p:793-820
    DOI: 10.1177/0049124115605341
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124115605341
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124115605341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. Diggle & M. G. Kenward, 1994. "Informative Drop‐Out in Longitudinal Data Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 49-73, March.
    2. Shu Xu & Shelley A. Blozis, 2011. "Sensitivity Analysis of Mixed Models for Incomplete Longitudinal Data," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 237-256, April.
    3. William Meredith & John Tisak, 1990. "Latent curve analysis," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 107-122, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu Xu & Shelley A. Blozis, 2011. "Sensitivity Analysis of Mixed Models for Incomplete Longitudinal Data," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 237-256, April.
    2. Kenneth A. Bollen & Patrick J. Curran, 2004. "Autoregressive Latent Trajectory (ALT) Models A Synthesis of Two Traditions," Sociological Methods & Research, , vol. 32(3), pages 336-383, February.
    3. Marc A. Scott & Mark S. Handcock, 2005. "Persistent Inequality? Answers From Hybrid Models for Longitudinal Data," Sociological Methods & Research, , vol. 34(1), pages 3-30, August.
    4. Betsy J. Feldman & Sophia Rabe-Hesketh, 2012. "Modeling Achievement Trajectories When Attrition Is Informative," Journal of Educational and Behavioral Statistics, , vol. 37(6), pages 703-736, December.
    5. David M. Murray & Jonathan L. Blitstein, 2003. "Methods To Reduce The Impact Of Intraclass Correlation In Group-Randomized Trials," Evaluation Review, , vol. 27(1), pages 79-103, February.
    6. Johan Oud & Manuel Voelkle, 2014. "Do missing values exist? Incomplete data handling in cross-national longitudinal studies by means of continuous time modeling," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3271-3288, November.
    7. Yih-Ing Hser & Haikang Shen & Chih-Ping Chou & Stephen C. Messer & M. Douglas Anglin, 2001. "Analytic Approaches for Assessing Long-Term Treatment Effects," Evaluation Review, , vol. 25(2), pages 233-262, April.
    8. Patrick E. B. FitzGerald, 2002. "Extended Generalized Estimating Equations for Binary Familial Data with Incomplete Families," Biometrics, The International Biometric Society, vol. 58(4), pages 718-726, December.
    9. Pourahmadi, Mohsen & Daniels, Michael J. & Park, Trevor, 2007. "Simultaneous modelling of the Cholesky decomposition of several covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 568-587, March.
    10. Laura Castro-Schilo & Barbara L. Fredrickson & Dan Mungas, 2019. "Association of Positive Affect with Cognitive Health and Decline for Elder Mexican Americans," Journal of Happiness Studies, Springer, vol. 20(8), pages 2385-2400, December.
    11. E. Michael Foster & Grace Y. Fang, 2004. "Alternative Methods for Handling Attrition," Evaluation Review, , vol. 28(5), pages 434-464, October.
    12. Mette Ejrnæs & Anders Holm, 2006. "Comparing Fixed Effects and Covariance Structure Estimators for Panel Data," Sociological Methods & Research, , vol. 35(1), pages 61-83, August.
    13. Chun Wang & Steven W. Nydick, 2020. "On Longitudinal Item Response Theory Models: A Didactic," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 339-368, June.
    14. Eldad Davidov & Stefan Thörner & Peter Schmidt & Stefanie Gosen & Carina Wolf, 2011. "Level and change of group-focused enmity in Germany: unconditional and conditional latent growth curve models with four panel waves," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 481-500, December.
    15. Pietro Lovaglio & Mario Mezzanzanica, 2013. "Classification of longitudinal career paths," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(2), pages 989-1008, February.
    16. Miran A. Jaffa & Ayad A. Jaffa, 2019. "A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 597-613, December.
    17. Bian, Yuan & Yi, Grace Y. & He, Wenqing, 2024. "A unified framework of analyzing missing data and variable selection using regularized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    18. Ke-Hai Yuan & Peter Bentler, 2006. "Mean Comparison: Manifest Variable Versus Latent Variable," Psychometrika, Springer;The Psychometric Society, vol. 71(1), pages 139-159, March.
    19. Lars Relund Nielsen & Erik Jørgensen & Søren Højsgaard, 2011. "Embedding a state space model into a Markov decision process," Annals of Operations Research, Springer, vol. 190(1), pages 289-309, October.
    20. Sun-Pyo Lee & Kyungji Kim & Sungbum Park, 2023. "Investigating the Market Success of Software-as-a-Service Providers: the Multivariate Latent Growth Curve Model Approach," Information Systems Frontiers, Springer, vol. 25(2), pages 639-658, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:46:y:2017:i:4:p:793-820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.