IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v72y2014icp77-91.html

Inference for longitudinal data with nonignorable nonmonotone missing responses

Author

Listed:
  • Sinha, Sanjoy K.
  • Kaushal, Amit
  • Xiao, Wenzhong

Abstract

For the analysis of longitudinal data with nonignorable and nonmonotone missing responses, a full likelihood method often requires intensive computation, especially when there are many follow-up times. The authors propose and explore a Monte Carlo method, based on importance sampling, for approximating the maximum likelihood estimators. The finite-sample properties of the proposed estimators are studied using simulations. An application of the proposed method is also provided using longitudinal data on peptide intensities obtained from a proteomics experiment of trauma patients.

Suggested Citation

  • Sinha, Sanjoy K. & Kaushal, Amit & Xiao, Wenzhong, 2014. "Inference for longitudinal data with nonignorable nonmonotone missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 77-91.
  • Handle: RePEc:eee:csdana:v:72:y:2014:i:c:p:77-91
    DOI: 10.1016/j.csda.2013.10.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313003952
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.10.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yi G.Y. & Cook R.J., 2002. "Marginal Methods for Incomplete Longitudinal Data Arising in Clusters," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1071-1080, December.
    2. P. Diggle & M. G. Kenward, 1994. "Informative Drop‐Out in Longitudinal Data Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 49-73, March.
    3. Sinha, Sanjoy K. & Laird, Nan M. & Fitzmaurice, Garrett M., 2010. "Multivariate logistic regression with incomplete covariate and auxiliary information," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2389-2397, November.
    4. Geert Verbeke & Geert Molenberghs & Herbert Thijs & Emmanuel Lesaffre & Michael G. Kenward, 2001. "Sensitivity Analysis for Nonrandom Dropout: A Local Influence Approach," Biometrics, The International Biometric Society, vol. 57(1), pages 7-14, March.
    5. J. G. Ibrahim & S. R. Lipsitz & M.‐H. Chen, 1999. "Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 173-190.
    6. Geert Verbeke & Geert Molenberghs, 2005. "Longitudinal and incomplete clinical studies," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 143-176.
    7. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivy Jansen & Ann Van den Troost & Geert Molenberghs & Ad A. Vermulst & Jan R. M. Gerris, 2006. "Modeling Partially Incomplete Marital Satisfaction Data," Sociological Methods & Research, , vol. 35(1), pages 113-136, August.
    2. S. Eftekhari Mahabadi & M. Ganjali, 2012. "An index of local sensitivity to non-ignorability for parametric survival models with potential non-random missing covariate: an application to the SEER cancer registry data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2327-2348, July.
    3. Bindele, Huybrechts F. & Nguelifack, Brice M., 2019. "Generalized signed-rank estimation for regression models with non-ignorable missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 14-33.
    4. Weiping Zhang & Feiyue Xie & Jiaxin Tan, 2020. "A robust joint modeling approach for longitudinal data with informative dropouts," Computational Statistics, Springer, vol. 35(4), pages 1759-1783, December.
    5. Betsy J. Feldman & Sophia Rabe-Hesketh, 2012. "Modeling Achievement Trajectories When Attrition Is Informative," Journal of Educational and Behavioral Statistics, , vol. 37(6), pages 703-736, December.
    6. O'Hara Hines, R.J. & Hines, W.G.S., 2007. "Covariance miss-specification and the local influence approach in sensitivity analyses of longitudinal data with drop-outs," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5537-5546, August.
    7. Xiaoyan Shi & Hongtu Zhu & Joseph G. Ibrahim, 2009. "Local Influence for Generalized Linear Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 65(4), pages 1164-1174, December.
    8. Jason Roy & Xihong Lin, 2005. "Missing Covariates in Longitudinal Data with Informative Dropouts: Bias Analysis and Inference," Biometrics, The International Biometric Society, vol. 61(3), pages 837-846, September.
    9. Sanjoy Sinha, 2012. "Robust analysis of longitudinal data with nonignorable missing responses," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(7), pages 913-938, October.
    10. David M. Murray & Jonathan L. Blitstein, 2003. "Methods To Reduce The Impact Of Intraclass Correlation In Group-Randomized Trials," Evaluation Review, , vol. 27(1), pages 79-103, February.
    11. Shu Yang & Jae Kwang Kim, 2016. "Likelihood-based Inference with Missing Data Under Missing-at-Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 436-454, June.
    12. Youngchao Ge & Sandrine Dudoit & Terence Speed, 2003. "Resampling-based multiple testing for microarray data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-77, June.
    13. Timothy B. Armstrong & Michal Kolesár & Mikkel Plagborg‐Møller, 2022. "Robust Empirical Bayes Confidence Intervals," Econometrica, Econometric Society, vol. 90(6), pages 2567-2602, November.
    14. Patrick E. B. FitzGerald, 2002. "Extended Generalized Estimating Equations for Binary Familial Data with Incomplete Families," Biometrics, The International Biometric Society, vol. 58(4), pages 718-726, December.
    15. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    16. Jolani, Shahab, 2014. "An analysis of longitudinal data with nonignorable dropout using the truncated multivariate normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 163-173.
    17. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    18. Bethany L Dearlove & Simon D W Frost, 2015. "Measuring Asymmetry in Time-Stamped Phylogenies," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-16, July.
    19. Eleanor McDonnell Feit & Mark A. Beltramo & Fred M. Feinberg, 2010. "Reality Check: Combining Choice Experiments with Market Data to Estimate the Importance of Product Attributes," Management Science, INFORMS, vol. 56(5), pages 785-800, May.
    20. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:72:y:2014:i:c:p:77-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.