IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v238y2024i4p728-739.html
   My bibliography  Save this article

An efficient discretization scheme for a dynamic Bayesian network in structural reliability analysis

Author

Listed:
  • Hongseok Kim
  • Dooyoul Lee

Abstract

Using a dynamic Bayesian network (DBN) to estimate the failure risk of a component or system that deteriorates with time has several advantages. A DBN discretizes the probability distribution of variables and thereby increases the efficiency of computing resources and reduces computation time. However, it is important to devise an optimal discretization scheme because the size of the model grows exponentially as the number of discretized intervals increases. In this paper, we propose an optimal discretization scheme for a DBN used to model the time-varying deterioration of a turbine blade component. The results of estimating the reliability indices with the DBN were verified by comparing them with the results of a Monte Carlo simulation. In addition, compared with a log-transformed discretization method, our DBN discretization method shows a significantly increased computation speed.

Suggested Citation

  • Hongseok Kim & Dooyoul Lee, 2024. "An efficient discretization scheme for a dynamic Bayesian network in structural reliability analysis," Journal of Risk and Reliability, , vol. 238(4), pages 728-739, August.
  • Handle: RePEc:sae:risrel:v:238:y:2024:i:4:p:728-739
    DOI: 10.1177/1748006X231182223
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X231182223
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X231182223?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zwirglmaier, Kilian & Straub, Daniel, 2016. "A discretization procedure for rare events in Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 96-109.
    2. Zhu, Jiandao & Collette, Matthew, 2015. "A dynamic discretization method for reliability inference in Dynamic Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 242-252.
    3. Lee, Dooyoul & Kwon, Kybeom, 2023. "Dynamic Bayesian network model for comprehensive risk analysis of fatigue-critical structural details," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Dooyoul & Kwon, Kybeom, 2023. "Dynamic Bayesian network model for comprehensive risk analysis of fatigue-critical structural details," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Roma, Giovanni & Di Maio, Francesco & Zio, Enrico, 2024. "A condition-informed dynamic Bayesian network framework to support severe accident management in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    3. Chih-Hao Wen & Ping-Yu Hsu & Ming-Shien Cheng, 2017. "Applying intelligent methods in detecting maritime smuggling," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(3), pages 573-599, August.
    4. Jing, Qi & Yu, Lin & Lan, Fengyi & Li, Yuntao, 2024. "Quantitative assessment rules and models for dynamic disaster risk in high-density gas gathering stations: Practical application in a largest CBM gathering station," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    5. Costa, Rodrigo & Haukaas, Terje & Chang, Stephanie E. & Dowlatabadi, Hadi, 2019. "Object-oriented model of the seismic vulnerability of the fuel distribution network in coastal British Columbia," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 11-23.
    6. Tosoni, E. & Salo, A. & Govaerts, J. & Zio, E., 2019. "Comprehensiveness of scenarios in the safety assessment of nuclear waste repositories," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 561-573.
    7. Ye, Yumei & Yang, Qiang & Zhang, Jingang & Meng, Songhe & Wang, Jun, 2023. "A dynamic data driven reliability prognosis method for structural digital twin and experimental validation," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    8. Dou, Qiang & Lu, Da-Gang & Zhang, Bo-Yi, 2025. "Physical resilience assessment of road transportation systems during post-earthquake emergency phase: With a focus on restoration modeling based on dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    9. Bismut, Elizabeth & Straub, Daniel, 2021. "Optimal adaptive inspection and maintenance planning for deteriorating structural systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Caetano, Henrique O. & N., Luiz Desuó & Fogliatto, Matheus S.S. & Maciel, Carlos D., 2024. "Resilience assessment of critical infrastructures using dynamic Bayesian networks and evidence propagation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Rebello, Sinda & Yu, Hongyang & Ma, Lin, 2018. "An integrated approach for system functional reliability assessment using Dynamic Bayesian Network and Hidden Markov Model," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 124-135.
    13. Li He & Qiyan Cao & Fengjun Shang, 2019. "Measuring Component Importance for Network System Using Cellular Automata," Complexity, Hindawi, vol. 2019, pages 1-11, May.
    14. Simon, Christophe & Bicking, Frédérique, 2017. "Hybrid computation of uncertainty in reliability analysis with p-box and evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 629-638.
    15. Hunte, Joshua L. & Neil, Martin & Fenton, Norman E., 2024. "A hybrid Bayesian network for medical device risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    16. Zwirglmaier, Kilian & Straub, Daniel, 2016. "A discretization procedure for rare events in Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 96-109.
    17. Byun, Ji-Eun & Song, Junho, 2021. "A general framework of Bayesian network for system reliability analysis using junction tree," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    19. Gao, Hai-Feng & Wang, Yu-Hang & Li, Yang & Zio, Enrico, 2024. "Distributed-collaborative surrogate modeling approach for creep-fatigue reliability assessment of turbine blades considering multi-source uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 250(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:238:y:2024:i:4:p:728-739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.