IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v235y2021i2p182-192.html
   My bibliography  Save this article

Risk assessment of wheel polygonization on high-speed trains based on Bayesian networks

Author

Listed:
  • Yuanchen Zeng
  • Dongli Song
  • Weihua Zhang
  • Bin Zhou
  • Mingyuan Xie
  • Xiaoyue Qi

Abstract

Wheel polygonization is an important failure mode for high-speed trains and causes huge maintenance costs, however, the studies on its reliability and risk are rare. First, failure effects analysis via dynamical simulations and tests indicates that high-order polygonization induces large wheel-rail forces and vehicle vibrations, which is quite detrimental to reliability and safety. Then, correlation analysis demonstrates that wheel polygonization is affected by season, wheel diameter, vehicle type and historical incidence rate. Next, a Bayesian network topology is designed based on related factors in sequential wheel operation process, and a risk assessment model based on an array of Bayesian networks is developed to produce the probability distribution of wheel polygonization over different severities. Further, the model is trained through a two-step scheme based on historical measurement data, including partially missing data. Finally, the proposed model is validated to effectively assess polygonization risks and detect high-risk wheels. Its application to risk-based maintenance can support the decision-making of wheel reprofiling, reduce failure impacts on reliability, and save maintenance costs.

Suggested Citation

  • Yuanchen Zeng & Dongli Song & Weihua Zhang & Bin Zhou & Mingyuan Xie & Xiaoyue Qi, 2021. "Risk assessment of wheel polygonization on high-speed trains based on Bayesian networks," Journal of Risk and Reliability, , vol. 235(2), pages 182-192, April.
  • Handle: RePEc:sae:risrel:v:235:y:2021:i:2:p:182-192
    DOI: 10.1177/1748006X20972574
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X20972574
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X20972574?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kilsby, Paul & Remenyte-Prescott, Rasa & Andrews, John, 2017. "A modelling approach for railway overhead line equipment asset management," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 326-337.
    2. Lei Jiang & Yiliu Liu & Xiaomin Wang & Mary Ann Lundteigen, 2019. "Operation-oriented reliability and availability evaluation for onboard high-speed train control system with dynamic Bayesian network," Journal of Risk and Reliability, , vol. 233(3), pages 455-469, June.
    3. Zhexiang Chi & Taotao Zhou & Simin Huang & Yan-Fu Li, 2020. "A data-driven approach for the health prognosis of high-speed train wheels," Journal of Risk and Reliability, , vol. 234(6), pages 735-747, December.
    4. Andrade, A.R. & Teixeira, P.F., 2015. "Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 169-183.
    5. Chi, Zhexiang & Chen, Ruoran & Huang, Simin & Li, Yan-Fu & Zhou, Bin & Zhang, Wenjuan, 2020. "Multi-State System Modeling and Reliability Assessment for Groups of High-speed Train Wheels," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Xinliang & Qu, Sheng & Sui, Hao & Wu, Pingbo, 2022. "Reliability modelling of wheel wear deterioration using conditional bivariate gamma processes and Bayesian hierarchical models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Braga, Joaquim A.P. & Andrade, António R., 2021. "Multivariate statistical aggregation and dimensionality reduction techniques to improve monitoring and maintenance in railways: The wheelset component," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Leonardo Leoni & Farshad BahooToroody & Saeed Khalaj & Filippo De Carlo & Ahmad BahooToroody & Mohammad Mahdi Abaei, 2021. "Bayesian Estimation for Reliability Engineering: Addressing the Influence of Prior Choice," IJERPH, MDPI, vol. 18(7), pages 1-16, March.
    4. Liu, Jie & Xu, Yubo & Wang, Lisong, 2022. "Fault information mining with causal network for railway transportation system," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    5. Yu, Yaocheng & Shuai, Bin & Huang, Wencheng, 2024. "Resilience evaluation of train control on-board system considering common cause failure: Based on a beta-factor and continuous-time bayesian network model," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    6. Cárdenas-Gallo, Iván & Sarmiento, Carlos A. & Morales, Gilberto A. & Bolivar, Manuel A. & Akhavan-Tabatabaei, Raha, 2017. "An ensemble classifier to predict track geometry degradation," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 53-60.
    7. Zhu, Tiefeng, 2020. "Reliability estimation for two-parameter Weibull distribution under block censoring," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    8. Shangguan, Anqi & Xie, Guo & Fei, Rong & Mu, Lingxia & Hei, Xinhong, 2023. "Train wheel degradation generation and prediction based on the time series generation adversarial network," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    9. Sedghi, Mahdieh & Kauppila, Osmo & Bergquist, Bjarne & Vanhatalo, Erik & Kulahci, Murat, 2021. "A taxonomy of railway track maintenance planning and scheduling: A review and research trends," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Liu, Xinyang & Zheng, Zhuoyuan & Büyüktahtakın, İ. Esra & Zhou, Zhi & Wang, Pingfeng, 2021. "Battery asset management with cycle life prognosis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Wu, Shaomin & Do, Phuc, 2017. "Editorial," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 1-3.
    12. Wang, Jian & Gao, Shibin & Yu, Long & Ma, Chaoqun & Zhang, Dongkai & Kou, Lei, 2023. "A data-driven integrated framework for predictive probabilistic risk analytics of overhead contact lines based on dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. Lin, Shuai & Jia, Limin & Zhang, Hengrun & Zhang, Pengzhu, 2022. "Reliability of high-speed electric multiple units in terms of the expanded multi-state flow network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    14. Xu, Ren-Hong & Lai, Yung-Cheng & Huang, Kwei-Long, 2021. "Decision support models for annual catenary maintenance task identification and assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    15. Yi Yang & John Dalsgaard Sørensen, 2020. "Probabilistic Availability Analysis for Marine Energy Transfer Subsystem Using Bayesian Network," Energies, MDPI, vol. 13(19), pages 1-27, October.
    16. Antonio Ramos Andrade & Julian Stow, 2017. "Assessing the efficiency of maintenance operators: A case study of turning railway wheelsets on an under-floor wheel lathe," Journal of Risk and Reliability, , vol. 231(2), pages 155-163, April.
    17. Chiachío, Juan & Chiachío, Manuel & Prescott, Darren & Andrews, John, 2019. "A knowledge-based prognostics framework for railway track geometry degradation," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 127-141.
    18. Men, Tianli & Li, Yan-Fu & Ji, Yujun & Zhang, Xinliang & Liu, Pengfei, 2022. "Health assessment of high-speed train wheels based on group-profile data," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    19. Santosh B. Rane & Prathamesh R. Potdar & Suraj Rane, 2019. "Accelerated life testing for reliability improvement: a case study on Moulded Case Circuit Breaker (MCCB) mechanism," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1668-1690, December.
    20. Abba, Badamasi & Wang, Hong & Bakouch, Hassan S., 2022. "A reliability and survival model for one and two failure modes system with applications to complete and censored datasets," Reliability Engineering and System Safety, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:235:y:2021:i:2:p:182-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.