IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v233y2019i6p958-971.html
   My bibliography  Save this article

A neuro-particle swarm optimization logistic model fitting algorithm for software reliability analysis

Author

Listed:
  • Pooja Rani
  • GS Mahapatra

Abstract

This article develops a particle swarm optimization algorithm based on a feed-forward neural network architecture to fit software reliability growth models. We employ adaptive inertia weight within the proposed particle swarm optimization in consideration of learning algorithm. The dynamic adaptive nature of proposed prior best particle swarm optimization prevents the algorithm from becoming trapped in local optima. These neuro-prior best particle swarm optimization algorithms were applied to a popular flexible logistic growth curve as the FLG C p P S A N N model based on the weights derived by the artificial neural network learning algorithm. We propose the prior best particle swarm optimization algorithm to train the network for application to three different software failure data sets. The new search strategy improves the rate of convergence because it retains information on the prior particle, thereby enabling better predictions. The results are verified through testing approaching of constant, modified, and linear inertia weight. We assess the fitness of each particle according to the normalized root mean squared error which updates the best particle and velocity to accelerate convergence to an optimal solution. Experimental results demonstrate that the proposed FLG C p P S A N N model based prior best Particle Swarm Optimization based on Neural Network (pPSONN) improves predictive quality over the FLG C ANN , FLG C PSANN , and existing model.

Suggested Citation

  • Pooja Rani & GS Mahapatra, 2019. "A neuro-particle swarm optimization logistic model fitting algorithm for software reliability analysis," Journal of Risk and Reliability, , vol. 233(6), pages 958-971, December.
  • Handle: RePEc:sae:risrel:v:233:y:2019:i:6:p:958-971
    DOI: 10.1177/1748006X19844784
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X19844784
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X19844784?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hu, Q.P. & Xie, M. & Ng, S.H. & Levitin, G., 2007. "Robust recurrent neural network modeling for software fault detection and correction prediction," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 332-340.
    2. Kong, Xiangyong & Gao, Liqun & Ouyang, Haibin & Li, Steven, 2015. "Solving the redundancy allocation problem with multiple strategy choices using a new simplified particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 147-158.
    3. Pratik Roy & G.S. Mahapatra & Kashi Nath Dey, 2013. "An S-shaped software reliability model with imperfect debugging and improved testing learning process," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 7(4), pages 372-387.
    4. Liang, Yun-Chia & Chen, Yi-Ching, 2007. "Redundancy allocation of series-parallel systems using a variable neighborhood search algorithm," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 323-331.
    5. Huang, Chia-Ling, 2015. "A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 221-230.
    6. Khalili-Damghani, Kaveh & Abtahi, Amir-Reza & Tavana, Madjid, 2013. "A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 58-75.
    7. Zhang, Enze & Chen, Qingwei, 2016. "Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 83-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Enze & Chen, Qingwei, 2016. "Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 83-92.
    2. Feizabadi, Mohammad & Jahromi, Abdolhamid Eshraghniaye, 2017. "A new model for reliability optimization of series-parallel systems with non-homogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 101-112.
    3. Guilani, Pedram Pourkarim & Azimi, Parham & Niaki, S.T.A. & Niaki, Seyed Armin Akhavan, 2016. "Redundancy allocation problem of a system with increasing failure rates of components based on Weibull distribution: A simulation-based optimization approach," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 187-196.
    4. Cao, Ran & Coit, David W. & Hou, Wei & Yang, Yushu, 2020. "Game theory based solution selection for multi-objective redundancy allocation in interval-valued problem parameters," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    5. Jiangbin Zhao & Shubin Si & Zhiqiang Cai & Ming Su & Wei Wang, 2019. "Multiobjective optimization of reliability–redundancy allocation problems for serial parallel-series systems based on importance measure," Journal of Risk and Reliability, , vol. 233(5), pages 881-897, October.
    6. Muhuri, Pranab K. & Nath, Rahul, 2019. "A novel evolutionary algorithmic solution approach for bilevel reliability-redundancy allocation problem," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. Wang, Wei & Lin, Mingqiang & Fu, Yongnian & Luo, Xiaoping & Chen, Hanghang, 2020. "Multi-objective optimization of reliability-redundancy allocation problem for multi-type production systems considering redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    8. Du, Mengyu & Li, Yan-Fu, 2020. "An investigation of new local search strategies in memetic algorithm for redundancy allocation in multi-state series-parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    9. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    10. Li, Shuai & Chi, Xuefen & Yu, Baozhu, 2022. "An improved particle swarm optimization algorithm for the reliability–redundancy allocation problem with global reliability," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Behzad Karimi & Seyed Taghi Akhavan Niaki & Seyyed Masih Miriha & Mahsa Ghare Hasanluo & Shima Javanmard, 2019. "A weighted K-means clustering approach to solve the redundancy allocation problem of systems having components with different failures," Journal of Risk and Reliability, , vol. 233(6), pages 925-942, December.
    12. Pradip Kundu, 2021. "A multi-objective reliability-redundancy allocation problem with active redundancy and interval type-2 fuzzy parameters," Operational Research, Springer, vol. 21(4), pages 2433-2458, December.
    13. Kong, Xiangyong & Gao, Liqun & Ouyang, Haibin & Li, Steven, 2015. "Solving the redundancy allocation problem with multiple strategy choices using a new simplified particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 147-158.
    14. Meisam Sadeghi & Emad Roghanian & Hamid Shahriari & Hassan Sadeghi, 2021. "Reliability optimization for non-repairable series-parallel systems with a choice of redundancy strategies and heterogeneous components: Erlang time-to-failure distribution," Journal of Risk and Reliability, , vol. 235(3), pages 509-528, June.
    15. Soheil Azizi & Milad Mohammadi, 2023. "Strategy selection for multi-objective redundancy allocation problem in a k-out-of-n system considering the mean time to failure," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 1021-1044, June.
    16. Nath, Rahul & Muhuri, Pranab K., 2022. "Evolutionary Optimization based Solution approaches for Many Objective Reliability-Redundancy Allocation Problem," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    17. Huang, Xianzhen & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2019. "A heuristic survival signature based approach for reliability-redundancy allocation," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 511-517.
    18. Meisam Sadeghi & Emad Roghanian, 2017. "Reliability optimization for non-repairable series-parallel systems with a choice of redundancy strategies: Erlang time-to-failure distribution," Journal of Risk and Reliability, , vol. 231(5), pages 587-604, October.
    19. Qiu, Qingan & Cui, Lirong & Gao, Hongda & Yi, He, 2018. "Optimal allocation of units in sequential probability series systems," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 351-363.
    20. Enrico Zio & Hadi Gholinezhad, 2023. "Redundancy Allocation of Components with Time-Dependent Failure Rates," Mathematics, MDPI, vol. 11(16), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:233:y:2019:i:6:p:958-971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.