IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v232y2018i5p505-523.html
   My bibliography  Save this article

Generic Bayesian network models for making maintenance decisions from available data and expert knowledge

Author

Listed:
  • Haoyuan Zhang
  • D William R Marsh

Abstract

To maximise asset reliability cost-effectively, maintenance should be scheduled based on the likely deterioration of an asset. Various statistical models have been proposed for predicting this, but they have important practical limitations. We present a Bayesian network model that can be used for maintenance decision support to overcome these limitations. The model extends an existing statistical model of asset deterioration, but shows how (1) data on the condition of assets available from their periodic inspection can be used, (2) failure data from related groups of asset can be combined using judgement from experts and (3) expert knowledge of the deterioration’s causes can be combined with statistical data to adjust predictions. A case study of bridges on the rail network in Great Britain (GB) is presented, showing how the model could be used for the maintenance decision problem, given typical data likely to be available in practice.

Suggested Citation

  • Haoyuan Zhang & D William R Marsh, 2018. "Generic Bayesian network models for making maintenance decisions from available data and expert knowledge," Journal of Risk and Reliability, , vol. 232(5), pages 505-523, October.
  • Handle: RePEc:sae:risrel:v:232:y:2018:i:5:p:505-523
    DOI: 10.1177/1748006X17742765
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X17742765
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X17742765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Langseth, Helge & Portinale, Luigi, 2007. "Bayesian networks in reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 92-108.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rogerson, Ellen C. & Lambert, James H., 2012. "Prioritizing risks via several expert perspectives with application to runway safety," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 22-34.
    2. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    3. Marquez, David & Neil, Martin & Fenton, Norman, 2010. "Improved reliability modeling using Bayesian networks and dynamic discretization," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 412-425.
    4. George-Williams, Hindolo & Patelli, Edoardo, 2017. "Efficient availability assessment of reconfigurable multi-state systems with interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 431-444.
    5. Vimal Vijayan & Sanjay K Chaturvedi & Ritesh Chandra, 2020. "A failure interaction model for multicomponent repairable systems," Journal of Risk and Reliability, , vol. 234(3), pages 470-486, June.
    6. Michail Cheliotis & Evangelos Boulougouris & Nikoletta L Trivyza & Gerasimos Theotokatos & George Livanos & George Mantalos & Athanasios Stubos & Emmanuel Stamatakis & Alexandros Venetsanos, 2021. "Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry," Energies, MDPI, vol. 14(11), pages 1-20, May.
    7. Iamsumang, Chonlagarn & Mosleh, Ali & Modarres, Mohammad, 2018. "Monitoring and learning algorithms for dynamic hybrid Bayesian network in on-line system health management applications," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 118-129.
    8. Penttinen, Jussi-Pekka & Niemi, Arto & Gutleber, Johannes & Koskinen, Kari T. & Coatanéa, Eric & Laitinen, Jouko, 2019. "An open modelling approach for availability and reliability of systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 387-399.
    9. Zhong, Shengtong & Langseth, Helge & Nielsen, Thomas Dyhre, 2014. "A classification-based approach to monitoring the safety of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 61-71.
    10. Bandeira, Michelle Carvalho Galvão Silva Pinto & Correia, Anderson Ribeiro & Martins, Marcelo Ramos, 2018. "General model analysis of aeronautical accidents involving human and organizational factors," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 137-146.
    11. El-Awady, Ahmed & Ponnambalam, Kumaraswamy, 2021. "Integration of simulation and Markov Chains to support Bayesian Networks for probabilistic failure analysis of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    12. Morales-Nápoles, Oswaldo & Steenbergen, Raphaël D.J.M., 2014. "Analysis of axle and vehicle load properties through Bayesian Networks based on Weigh-in-Motion data," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 153-164.
    13. Yontay, Petek & Pan, Rong, 2016. "A computational Bayesian approach to dependency assessment in system reliability," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 104-114.
    14. A Léger & P Weber & E Levrat & C Duval & R Farret & B Iung, 2009. "Methodological developments for probabilistic risk analyses of socio-technical systems," Journal of Risk and Reliability, , vol. 223(4), pages 313-332, December.
    15. Zhou, Ying & Li, Chenshuang & Zhou, Cheng & Luo, Hanbin, 2018. "Using Bayesian network for safety risk analysis of diaphragm wall deflection based on field data," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 152-167.
    16. Andrews, John & Fecarotti, Claudia, 2017. "System design and maintenance modelling for safety in extended life operation," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 95-108.
    17. Limao Zhang & Xianguo Wu & Yawei Qin & Miroslaw J. Skibniewski & Wenli Liu, 2016. "Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel‐Induced Pipeline Damage," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 278-301, February.
    18. Codetta-Raiteri, Daniele & Portinale, Luigi, 2017. "Generalized Continuous Time Bayesian Networks as a modelling and analysis formalism for dependable systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 639-651.
    19. Amrin, Andas & Zarikas, Vasileios & Spitas, Christos, 2018. "Reliability analysis and functional design using Bayesian networks generated automatically by an “Idea Algebra†framework," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 211-225.
    20. Montewka, Jakub & Ehlers, Sören & Goerlandt, Floris & Hinz, Tomasz & Tabri, Kristjan & Kujala, Pentti, 2014. "A framework for risk assessment for maritime transportation systems—A case study for open sea collisions involving RoPax vessels," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 142-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:232:y:2018:i:5:p:505-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.