IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v221y2007i2p133-140.html
   My bibliography  Save this article

Reliability and maintainability allocation to minimize total cost of ownership in a series-parallel system

Author

Listed:
  • U. Dinesh Kumar
  • J. E. Ramírez-Márquez
  • D Nowicki
  • D Verma

Abstract

Allocation of system level requirements is most effective when performed early in the system's design phase. This holds especially true for two critical and fundamental design characteristics: reliability and maintainability. Traditional reliability allocation models are developed to either maximize system reliability under a cost constraint or minimize cost subject to a system-level, target reliability constraint. Cost, in these traditional allocation models, is represented solely by unit cost. Unit cost, by itself, is an inadequate measure of a system's operational effectiveness. In fact, the underlying economic metric used to properly describe the operational effectiveness of a system is total cost of ownership (TCO). TCO includes not only the upstream unit cost but the downstream operations, maintenance, and support costs. In this paper, new allocation models are developed based on TCO that simultaneously allocate both reliability and maintainability for a series-parallel system subject to meeting a system-level availability target. A non-linear representation of a mathematical model is defined that simultaneously allocates both system-level reliability and maintainability targets in a manner that minimizes TCO. This non-linear model is then transformed into a surrogate linear model that can be solved using existing commercial software. Examples are then discussed to illustrate the solution procedure and to show the sensitivity of allocation design decisions to fluctuations in economic factors such as discount rates, and design factors such as the life of the system.

Suggested Citation

  • U. Dinesh Kumar & J. E. Ramírez-Márquez & D Nowicki & D Verma, 2007. "Reliability and maintainability allocation to minimize total cost of ownership in a series-parallel system," Journal of Risk and Reliability, , vol. 221(2), pages 133-140, June.
  • Handle: RePEc:sae:risrel:v:221:y:2007:i:2:p:133-140
    DOI: 10.1243/1748006XJRR41
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1243/1748006XJRR41
    Download Restriction: no

    File URL: https://libkey.io/10.1243/1748006XJRR41?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gen, Mitsuo & Yun, YoungSu, 2006. "Soft computing approach for reliability optimization: State-of-the-art survey," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1008-1026.
    2. Yalaoui, Alice & Chu, Chengbin & Châtelet, Eric, 2005. "Reliability allocation problem in a series–parallel system," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 55-61.
    3. de Castro, Hélio Fiori & Cavalca, Katia Lucchesi, 2006. "Maintenance resources optimization applied to a manufacturing system," Reliability Engineering and System Safety, Elsevier, vol. 91(4), pages 413-420.
    4. Subba Rao V. Majety & Milind Dawande & Jayant Rajgopal, 1999. "Optimal Reliability Allocation with Discrete Cost-Reliability Data for Components," Operations Research, INFORMS, vol. 47(6), pages 899-906, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tavakkoli-Moghaddam, R. & Safari, J. & Sassani, F., 2008. "Reliability optimization of series-parallel systems with a choice of redundancy strategies using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 550-556.
    2. Sadjadi, Seyed Jafar & Soltani, R., 2009. "An efficient heuristic versus a robust hybrid meta-heuristic for general framework of serial–parallel redundancy problem," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1703-1710.
    3. Li, Chun-yang & Chen, Xun & Yi, Xiao-shan & Tao, Jun-yong, 2010. "Heterogeneous redundancy optimization for multi-state series–parallel systems subject to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 202-207.
    4. Debasis Bhattacharya & Soma Roychowdhury, 2017. "A redundancy strategy for minimizing cost in systems with non-disjoint subsystems under reliability constraint," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 645-655, November.
    5. Hadipour, Hassan & Amiri, Maghsoud & Sharifi, Mani, 2019. "Redundancy allocation in series-parallel systems under warm standby and active components in repairable subsystems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    6. Peiravi, Abdossaber & Nourelfath, Mustapha & Zanjani, Masoumeh Kazemi, 2022. "Universal redundancy strategy for system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    8. Prashanthi Boddu & Liudong Xing, 2013. "Reliability evaluation and optimization of series–parallel systems with k-out-of-n: G subsystems and mixed redundancy types," Journal of Risk and Reliability, , vol. 227(2), pages 187-198, April.
    9. Coelho, Leandro dos Santos, 2009. "Reliability–redundancy optimization by means of a chaotic differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 594-602.
    10. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2013. "Cold-standby sequencing optimization considering mission cost," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 28-34.
    11. Hao Li & Shanghua Mi & Qifeng Li & Xiaoyu Wen & Dongping Qiao & Guofu Luo, 2020. "A scheduling optimization method for maintenance, repair and operations service resources of complex products," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1673-1691, October.
    12. Levitin, Gregory & Xing, Liudong & Haim, Hanoch Ben & Dai, Yuanshun, 2019. "Optimal structure of series system with 1-out-of-n warm standby subsystems performing operation and rescue functions," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 523-531.
    13. Ji-hui Yang & Bing-yuan Cao, 2010. "Fuzzy geometric programming and its application," Fuzzy Information and Engineering, Springer, vol. 2(1), pages 101-112, March.
    14. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
    15. Wang, Naichao & Li, Mingyuan & Xiao, Boping & Ma, Lin, 2019. "Availability analysis of a general time distribution system with the consideration of maintenance and spares," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    16. Safari, Jalal, 2012. "Multi-objective reliability optimization of series-parallel systems with a choice of redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 10-20.
    17. MacKenzie, Cameron A. & Hu, Chao, 2019. "Decision making under uncertainty for design of resilient engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    18. Zhao, Peng & Zhang, Yiying & Li, Long, 2015. "Redundancy allocation at component level versus system level," European Journal of Operational Research, Elsevier, vol. 241(2), pages 402-411.
    19. Figueroa–García, Juan Carlos & Hernández, Germán & Franco, Carlos, 2022. "A review on history, trends and perspectives of fuzzy linear programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    20. Peiravi, Abdossaber & Nourelfath, Mustapha & Zanjani, Masoumeh Kazemi, 2022. "Redundancy strategies assessment and optimization of k-out-of-n systems based on Markov chains and genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:221:y:2007:i:2:p:133-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.