IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v41y2021i2p143-152.html
   My bibliography  Save this article

Applied Methods for Estimating Transition Probabilities from Electronic Health Record Data

Author

Listed:
  • Patricia J. Rodriguez

    (Comparative Health Outcomes, Policy, and Economics Institute, University of Washington, Seattle, WA, USA)

  • Zachary J. Ward

    (Center for Health Decision Science, Harvard T. H. Chan School of Public Health, Boston, MA, USA)

  • Michael W. Long

    (Department of Prevention and Community Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA)

  • S. Bryn Austin

    (Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
    Division of Adolescent and Young Adult Medicine, Boston Children’s Hospital, Boston, MA, USA)

  • Davene R. Wright

    (Comparative Health Outcomes, Policy, and Economics Institute, University of Washington, Seattle, WA, USA
    Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA)

Abstract

Background Electronic health record (EHR) data contain longitudinal patient information and standardized diagnostic codes. EHR data may be useful for estimating transition probabilities for state-transition models, but no guidelines exist on appropriate methods. We applied 3 potential methods to estimate transition probabilities from EHR data, using pediatric eating disorders (EDs) as a case study. Methods We obtained EHR data from PEDsnet, which includes 8 US children’s hospitals. Data included inpatient, outpatient, and emergency department visits for all patients with an ED. We mapped diagnoses to 3 ED health states: anorexia nervosa, bulimia nervosa, and other specified feeding or eating disorder. We estimated 1-y transition probabilities for males and females using 3 approaches: simple first-last proportions, a multistate Markov (MSM) model, and independent survival models. Results Transition probability estimates varied widely between approaches. The first-last proportion approach estimated higher probabilities of remaining in the same health state, while the MSM and independent survival approaches estimated higher probabilities of transitioning to a different health state. All estimates differed substantially from published literature. Limitations As a source of health state information, EHR data are incomplete and sometimes inaccurate. EHR data were especially challenging for EDs, limiting the estimation and interpretation of transition probabilities. Conclusions The 3 approaches produced very different transition probability estimates. Estimates varied considerably from published literature and were rescaled and calibrated for use in a microsimulation model. Estimation of transition probabilities from EHR data may be more promising for diseases that are well documented in the EHR. Furthermore, clinicians and health systems should work to improve documentation of ED in the EHR. Further research is needed on methods for using EHR data to inform transition probabilities.

Suggested Citation

  • Patricia J. Rodriguez & Zachary J. Ward & Michael W. Long & S. Bryn Austin & Davene R. Wright, 2021. "Applied Methods for Estimating Transition Probabilities from Electronic Health Record Data," Medical Decision Making, , vol. 41(2), pages 143-152, February.
  • Handle: RePEc:sae:medema:v:41:y:2021:i:2:p:143-152
    DOI: 10.1177/0272989X20985752
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X20985752
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X20985752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    2. Drummond, Michael F. & Sculpher, Mark J. & Claxton, Karl & Stoddart, Greg L. & Torrance, George W., 2015. "Methods for the Economic Evaluation of Health Care Programmes," OUP Catalogue, Oxford University Press, edition 4, number 9780199665884.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    2. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    3. Hossein Haji Ali Afzali & Laura Bojke & Jonathan Karnon, 2018. "Model Structuring for Economic Evaluations of New Health Technologies," PharmacoEconomics, Springer, vol. 36(11), pages 1309-1319, November.
    4. Salah Ghabri & Françoise F. Hamers & Jean Michel Josselin, 2016. "Exploring Uncertainty in Economic Evaluations of Drugs and Medical Devices: Lessons from the First Review of Manufacturers’ Submissions to the French National Authority for Health," PharmacoEconomics, Springer, vol. 34(6), pages 617-624, June.
    5. Yasuhiro Hagiwara & Takeru Shiroiwa, 2022. "Estimating Value-Based Price and Quantifying Uncertainty around It in Health Technology Assessment: Frequentist and Bayesian Approaches," Medical Decision Making, , vol. 42(5), pages 672-683, July.
    6. Amr Makady & Ard Veelen & Páll Jonsson & Owen Moseley & Anne D’Andon & Anthonius Boer & Hans Hillege & Olaf Klungel & Wim Goettsch, 2018. "Using Real-World Data in Health Technology Assessment (HTA) Practice: A Comparative Study of Five HTA Agencies," PharmacoEconomics, Springer, vol. 36(3), pages 359-368, March.
    7. Matthew Franklin & James Lomas & Gerry Richardson, 2020. "Conducting Value for Money Analyses for Non-randomised Interventional Studies Including Service Evaluations: An Educational Review with Recommendations," PharmacoEconomics, Springer, vol. 38(7), pages 665-681, July.
    8. David Brain & Ruth Tulleners & Xing Lee & Qinglu Cheng & Nicholas Graves & Rosana Pacella, 2019. "Cost-effectiveness analysis of an innovative model of care for chronic wounds patients," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-13, March.
    9. Ezeofor Victory & Edwards T. Rhiannon & Burnside Girvan & Adair Pauline & Pine M. Cynthia, 2022. "Cost-effectiveness Analysis of the Dental RECUR Pragmatic Randomized Controlled Trial: Evaluating a Goal-oriented Talking Intervention to Prevent Reoccurrence of Dental Caries in Children," Applied Health Economics and Health Policy, Springer, vol. 20(3), pages 431-445, May.
    10. Astrid Van Muylder & Thomas D’Hooghe & Jeroen Luyten, 2023. "Economic Evaluation of Medically Assisted Reproduction: A Methodological Systematic Review," Medical Decision Making, , vol. 43(7-8), pages 973-991, October.
    11. Alec Morton & Amanda I. Adler & David Bell & Andrew Briggs & Werner Brouwer & Karl Claxton & Neil Craig & Alastair Fischer & Peter McGregor & Pieter van Baal, 2016. "Unrelated Future Costs and Unrelated Future Benefits: Reflections on NICE Guide to the Methods of Technology Appraisal," Health Economics, John Wiley & Sons, Ltd., vol. 25(8), pages 933-938, August.
    12. Osvaldo Ulises Garay & Marie Libérée Nishimwe & Marwân-al-Qays Bousmah & Asmaa Janah & Pierre-Marie Girard & Geneviève Chêne & Laetitia Moinot & Luis Sagaon-Teyssier & Jean-Luc Meynard & Bruno Spire &, 2019. "Cost-Effectiveness Analysis of Lopinavir/Ritonavir Monotherapy Versus Standard Combination Antiretroviral Therapy in HIV-1 Infected Patients with Viral Suppression in France (ANRS 140 DREAM)," PharmacoEconomics - Open, Springer, vol. 3(4), pages 505-515, December.
    13. Xiao Zang & Emanuel Krebs & Linwei Wang & Brandon D. L. Marshall & Reuben Granich & Bruce R. Schackman & Julio S. G. Montaner & Bohdan Nosyk, 2019. "Structural Design and Data Requirements for Simulation Modelling in HIV/AIDS: A Narrative Review," PharmacoEconomics, Springer, vol. 37(10), pages 1219-1239, October.
    14. Andrija S Grustam & Nasuh Buyukkaramikli & Ron Koymans & Hubertus J M Vrijhoef & Johan L Severens, 2019. "Value of information analysis in telehealth for chronic heart failure management," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
    15. Caroline S. Clarke & Mariya Melnychuk & Angus I. G. Ramsay & Cecilia Vindrola-Padros & Claire Levermore & Ravi Barod & Axel Bex & John Hines & Muntzer M. Mughal & Kathy Pritchard-Jones & Maxine Tran &, 2022. "Cost-Utility Analysis of Major System Change in Specialist Cancer Surgery in London, England, Using Linked Patient-Level Electronic Health Records and Difference-in-Differences Analysis," Applied Health Economics and Health Policy, Springer, vol. 20(6), pages 905-917, November.
    16. Deidda, Manuela & Geue, Claudia & Kreif, Noemi & Dundas, Ruth & McIntosh, Emma, 2019. "A framework for conducting economic evaluations alongside natural experiments," Social Science & Medicine, Elsevier, vol. 220(C), pages 353-361.
    17. Kasper M. Johannesen & Karl Claxton & Mark J. Sculpher & Allan J. Wailoo, 2018. "How to design the cost‐effectiveness appraisal process of new healthcare technologies to maximise population health: A conceptual framework," Health Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 41-54, February.
    18. Matthew Franklin & James Lomas & Simon Walker & Tracey Young, 2019. "An Educational Review About Using Cost Data for the Purpose of Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 37(5), pages 631-643, May.
    19. David Brain & Jonathan Mitchell & James O’Beirne, 2020. "Cost-effectiveness analysis of an outreach model of Hepatitis C Virus (HCV) assessment to facilitate HCV treatment in primary care," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-13, June.
    20. Edward Cox & Simon Walker & Charlotte L. Edwardson & Stuart J. H. Biddle & Alexandra M. Clarke-Cornwell & Stacy A. Clemes & Melanie J. Davies & David W. Dunstan & Helen Eborall & Malcolm H. Granat & L, 2022. "The Cost-Effectiveness of the SMART Work & Life Intervention for Reducing Sitting Time," IJERPH, MDPI, vol. 19(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:41:y:2021:i:2:p:143-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.