IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v30y2010i2p155-162.html
   My bibliography  Save this article

Exploring the Research Decision Space: The Expected Value of Information for Sequential Research Designs

Author

Listed:
  • Susan Griffin

    (Centre for Health Economics, University of York, York, United Kingdom, scg3@york.ac.uk)

  • Nicky J. Welton

    (Department of Community Based Medicine, University of Bristol, Bristol, United Kingdom)

  • Karl Claxton

    (Centre for Health Economics, University of York, York, United Kingdom)

Abstract

Purpose. To investigate the expected value of partial perfect information (EVPPI) and the research decisions it can address. Methods. Expected value of information (EVI) analysis assesses the expected gain in net benefit from further research. Where the expected value of perfect information (EVPI) exceeds the costs of additional research, EVPPI can be used to identify parameters that contribute most to the EVPI and parameters with no EVPPI that may be disregarded as targets for further research. Recently, it was noted that parameters with low EVPPI for a one-off research design may be associated with high EVPPI when considered as part of a sequential design. This article examines the characteristics and role of conditional and sequential EVPPI in EVI analysis. Results. The calculation of EVPPI is demonstrated for single parameters, groups of parameters, and conditional and sequential EVPPI. Conditional EVPPI is the value of perfect information about one parameter, conditional on having obtained perfect information about another. Sequential EVPPI is the value of perfect information for a sequential research design to investigate first one parameter, then another. Conditional EVPPI differs from the individual EVPPI for a single parameter. Sequential EVPPI includes elements from the joint EVPPI for the parameters and the EVPPI for the first parameter in sequence. Sequential designs allow abandonment of research on the second parameter on the basis of additional information obtained on the first. Conclusions. The research decision space addressed by EVI analyses can be widened by incorporating sequential EVPPI to assess sequential research designs.

Suggested Citation

  • Susan Griffin & Nicky J. Welton & Karl Claxton, 2010. "Exploring the Research Decision Space: The Expected Value of Information for Sequential Research Designs," Medical Decision Making, , vol. 30(2), pages 155-162, March.
  • Handle: RePEc:sae:medema:v:30:y:2010:i:2:p:155-162
    DOI: 10.1177/0272989X09344746
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X09344746
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X09344746?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hung‐po Chao & Stephen C. Peck & Y. Steve Wan, 1994. "Managing Uncertainty: The Tropospheric Ozone Challenge," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 465-475, August.
    2. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    3. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    4. Fumie Yokota & Kimberly M. Thompson, 2004. "Value of Information Analysis in Environmental Health Risk Management Decisions: Past, Present, and Future," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 635-650, June.
    5. Karl Claxton & Simon Eggington & Laura Ginnelly & Susan Griffin & Christopher McCabe & Zoe Philips & Paul Tappenden & Alan Wailoo, 2005. "A Pilot Study of Value of Information Analysis to Support Research Recommendations for the National Institute for Health and Clinical Excellence," Working Papers 004cherp, Centre for Health Economics, University of York.
    6. Alan Brennan & Samer Kharroubi & Anthony O'Hagan & Jim Chilcott, 2007. "Calculating Partial Expected Value of Perfect Information via Monte Carlo Sampling Algorithms," Medical Decision Making, , vol. 27(4), pages 448-470, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andres Alban & Stephen E. Chick & Martin Forster, 2023. "Value-Based Clinical Trials: Selecting Recruitment Rates and Trial Lengths in Different Regulatory Contexts," Management Science, INFORMS, vol. 69(6), pages 3516-3535, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    2. Josh J. Carlson & Rahber Thariani & Josh Roth & Julie Gralow & N. Lynn Henry & Laura Esmail & Pat Deverka & Scott D. Ramsey & Laurence Baker & David L. Veenstra, 2013. "Value-of-Information Analysis within a Stakeholder-Driven Research Prioritization Process in a US Setting: An Application in Cancer Genomics," Medical Decision Making, , vol. 33(4), pages 463-471, May.
    3. Hester V Eeren & Saskia J Schawo & Ron H J Scholte & Jan J V Busschbach & Leona Hakkaart, 2015. "Value of Information Analysis Applied to the Economic Evaluation of Interventions Aimed at Reducing Juvenile Delinquency: An Illustration," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-15, July.
    4. Zoe Philips & Karl Claxton & Stephen Palmer, 2008. "The Half-Life of Truth: What Are Appropriate Time Horizons for Research Decisions?," Medical Decision Making, , vol. 28(3), pages 287-299, May.
    5. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    6. Xiaoyi Liu & Jonghyun Lee & Peter Kitanidis & Jack Parker & Ungtae Kim, 2012. "Value of Information as a Context-Specific Measure of Uncertainty in Groundwater Remediation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1513-1535, April.
    7. Arantzazu Arrospide & Oliver Ibarrondo & Iván Castilla & Igor Larrañaga & Javier Mar, 2022. "Development and Validation of a Discrete Event Simulation Model to Evaluate the Cardiovascular Impact of Population Policies for Obesity," Medical Decision Making, , vol. 42(2), pages 241-254, February.
    8. Amanda P. Rehr & Mitchell J. Small & Paul S. Fischbeck & Patricia Bradley & William S. Fisher, 2014. "The role of scientific studies in building consensus in environmental decision making: a coral reef example," Environment Systems and Decisions, Springer, vol. 34(1), pages 60-87, March.
    9. Mark Oppe & Daniela Ortín-Sulbarán & Carlos Vila Silván & Anabel Estévez-Carrillo & Juan M. Ramos-Goñi, 2021. "Cost-effectiveness of adding Sativex® spray to spasticity care in Belgium: using bootstrapping instead of Monte Carlo simulation for probabilistic sensitivity analyses," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(5), pages 711-721, July.
    10. Kaitlyn Hastings & Clara Marquina & Jedidiah Morton & Dina Abushanab & Danielle Berkovic & Stella Talic & Ella Zomer & Danny Liew & Zanfina Ademi, 2022. "Projected New-Onset Cardiovascular Disease by Socioeconomic Group in Australia," PharmacoEconomics, Springer, vol. 40(4), pages 449-460, April.
    11. Andrea Marcellusi & Raffaella Viti & Loreta A. Kondili & Stefano Rosato & Stefano Vella & Francesco Saverio Mennini, 2019. "Economic Consequences of Investing in Anti-HCV Antiviral Treatment from the Italian NHS Perspective: A Real-World-Based Analysis of PITER Data," PharmacoEconomics, Springer, vol. 37(2), pages 255-266, February.
    12. Risha Gidwani & Louise B. Russell, 2020. "Estimating Transition Probabilities from Published Evidence: A Tutorial for Decision Modelers," PharmacoEconomics, Springer, vol. 38(11), pages 1153-1164, November.
    13. Alan Brennan & Samer Kharroubi & Anthony O'Hagan & Jim Chilcott, 2007. "Calculating Partial Expected Value of Perfect Information via Monte Carlo Sampling Algorithms," Medical Decision Making, , vol. 27(4), pages 448-470, July.
    14. Round, Jeff, 2012. "Is a QALY still a QALY at the end of life?," Journal of Health Economics, Elsevier, vol. 31(3), pages 521-527.
    15. Xinyue Dong & Xiaoning He & Jing Wu, 2022. "Cost Effectiveness of the First‐in‐Class ARNI (Sacubitril/Valsartan) for the Treatment of Essential Hypertension in a Chinese Setting," PharmacoEconomics, Springer, vol. 40(12), pages 1187-1205, December.
    16. Joseph F. Levy & Marjorie A. Rosenberg, 2019. "A Latent Class Approach to Modeling Trajectories of Health Care Cost in Pediatric Cystic Fibrosis," Medical Decision Making, , vol. 39(5), pages 593-604, July.
    17. Jisoo A Kwon & Georgina M Chambers & Fabio Luciani & Lei Zhang & Shamin Kinathil & Dennis Kim & Hla-Hla Thein & Willings Botha & Sandra Thompson & Andrew Lloyd & Lorraine Yap & Richard T Gray & Tony B, 2021. "Hepatitis C treatment strategies in prisons: A cost-effectiveness analysis," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-13, February.
    18. Nicky Welton & A. E. Ades, 2012. "Research Decisions In The Face Of Heterogeneity: What Can A New Study Tell Us?," Health Economics, John Wiley & Sons, Ltd., vol. 21(10), pages 1196-1200, October.
    19. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    20. Kan Shao & Mitchell J. Small, 2011. "Potential Uncertainty Reduction in Model‐Averaged Benchmark Dose Estimates Informed by an Additional Dose Study," Risk Analysis, John Wiley & Sons, vol. 31(10), pages 1561-1575, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:30:y:2010:i:2:p:155-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.