IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v46y2021i2p219-243.html
   My bibliography  Save this article

The Bayesian Covariance Structure Model for Testlets

Author

Listed:
  • Jean-Paul Fox
  • Jeremias Wenzel
  • Konrad Klotzke

    (159204University of Twente)

Abstract

Standard item response theory (IRT) models have been extended with testlet effects to account for the nesting of items; these are well known as (Bayesian) testlet models or random effect models for testlets. The testlet modeling framework has several disadvantages. A sufficient number of testlet items are needed to estimate testlet effects, and a sufficient number of individuals are needed to estimate testlet variance. The prior for the testlet variance parameter can only represent a positive association among testlet items. The inclusion of testlet parameters significantly increases the number of model parameters, which can lead to computational problems. To avoid these problems, a Bayesian covariance structure model (BCSM) for testlets is proposed, where standard IRT models are extended with a covariance structure model to account for dependences among testlet items. In the BCSM, the dependence among testlet items is modeled without using testlet effects. This approach does not imply any sample size restrictions and is very efficient in terms of the number of parameters needed to describe testlet dependences. The BCSM is compared to the well-known Bayesian random effects model for testlets using a simulation study. Specifically for testlets with a few items, a small number of test takers, or weak associations among testlet items, the BCSM shows more accurate estimation results than the random effects model.

Suggested Citation

  • Jean-Paul Fox & Jeremias Wenzel & Konrad Klotzke, 2021. "The Bayesian Covariance Structure Model for Testlets," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 219-243, April.
  • Handle: RePEc:sae:jedbes:v:46:y:2021:i:2:p:219-243
    DOI: 10.3102/1076998620941204
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998620941204
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998620941204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jean-Paul Fox & Joris Mulder & Sandip Sinharay, 2017. "Bayes Factor Covariance Testing in Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 979-1006, December.
    2. Eric Bradlow & Howard Wainer & Xiaohui Wang, 1999. "A Bayesian random effects model for testlets," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 153-168, June.
    3. Michael Pitt & David Chan & Robert Kohn, 2006. "Efficient Bayesian inference for Gaussian copula regression models," Biometrika, Biometrika Trust, vol. 93(3), pages 537-554, September.
    4. Konrad Klotzke & Jean-Paul Fox, 2019. "Modeling Dependence Structures for Response Times in a Bayesian Framework," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 649-672, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quinn N. Lathrop & Ying Cheng, 2017. "Item Cloning Variation and the Impact on the Parameters of Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 245-263, March.
    2. Nana Kim & Daniel M. Bolt & James Wollack, 2022. "Noncompensatory MIRT For Passage-Based Tests," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 992-1009, September.
    3. Anindya Bhadra & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Inferring network structure in non†normal and mixed discrete†continuous genomic data," Biometrics, The International Biometric Society, vol. 74(1), pages 185-195, March.
    4. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    5. Azam, Kazim, 2014. "Effects of Marginal Specifcations on Copula Estimation," Economic Research Papers 270230, University of Warwick - Department of Economics.
    6. Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," The Warwick Economics Research Paper Series (TWERPS) 1051, University of Warwick, Department of Economics.
    7. Martijn G. de Jong & Jan-Benedict E. M. Steenkamp & Bernard P. Veldkamp, 2009. "A Model for the Construction of Country-Specific Yet Internationally Comparable Short-Form Marketing Scales," Marketing Science, INFORMS, vol. 28(4), pages 674-689, 07-08.
    8. Anindya Bhadra, 2022. "Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 235-239, June.
    9. Alexander Robitzsch, 2023. "Linking Error in the 2PL Model," J, MDPI, vol. 6(1), pages 1-27, January.
    10. Jean-Paul Fox & Cees Glas, 2001. "Bayesian estimation of a multilevel IRT model using gibbs sampling," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 271-288, June.
    11. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    12. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    13. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    14. Zichen Ma & Shannon W. Davis & Yen‐Yi Ho, 2023. "Flexible copula model for integrating correlated multi‐omics data from single‐cell experiments," Biometrics, The International Biometric Society, vol. 79(2), pages 1559-1572, June.
    15. Martijn G. de Jong & Donald R. Lehmann & Oded Netzer, 2012. "State-Dependence Effects in Surveys," Marketing Science, INFORMS, vol. 31(5), pages 838-854, September.
    16. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
    17. Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," Economic Research Papers 270232, University of Warwick - Department of Economics.
    18. Michela Gnaldi & Silvia Bacci & Thiemo Kunze & Samuel Greiff, 2020. "Students’ Complex Problem Solving Profiles," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 469-501, June.
    19. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    20. Peida Zhan & Hong Jiao & Dandan Liao & Feiming Li, 2019. "A Longitudinal Higher-Order Diagnostic Classification Model," Journal of Educational and Behavioral Statistics, , vol. 44(3), pages 251-281, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:46:y:2021:i:2:p:219-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.