IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i8p1550147719866140.html
   My bibliography  Save this article

Network access and spectrum allocation in next-generation multi-heterogeneous networks

Author

Listed:
  • Xiaoqing Dong
  • Lianglun Cheng
  • Gengzhong Zheng
  • Tao Wang

Abstract

In a multi-heterogeneous network with dense deployment and convergence environment, how to efficiently and reasonably allocate idle spectrum resources of the primary network to meet the diversified business demands of secondary users is a difficult problem. In this article, with the goal of maximizing the total transmission rate and minimizing the total cost, a dual-objective optimization mathematical model for network selection and idle spectrum allocation is established in the context of comprehensive consideration of the diversity of spectrum resource attributes and the diversification of secondary users’ business needs. Based on this, two kinds of technical paths to solve the complex network selection and spectrum allocation problem are applied in this article. The first is the simplification method. By preprocessing of objective function, constraint simplification, and standardization, the complex spectrum allocation problem is transformed into a standard form of the 01 programming problem, and the solution is obtained by an improved Hungarian algorithm. Second, an intelligent optimization algorithm named improved non-dominated sorting genetic algorithm II is proposed, which combines the interference constraints of the primary network and the service quality requirements of the secondary users into the objective value evaluation of non-dominated sorting, and corrects the chromosomes that do not meet the constraints. And then makes a decision selection on the optimal solution set to select a compromise solution. Finally, methods proposed in this article are compared with the multi-objective artificial bee colony algorithm through experiments. Experimental results show that the simplified method has higher efficiency, and the improved non-dominated sorting genetic algorithm II can get higher transmission rate, especially the transmission rate–priority strategy.

Suggested Citation

  • Xiaoqing Dong & Lianglun Cheng & Gengzhong Zheng & Tao Wang, 2019. "Network access and spectrum allocation in next-generation multi-heterogeneous networks," International Journal of Distributed Sensor Networks, , vol. 15(8), pages 15501477198, August.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:8:p:1550147719866140
    DOI: 10.1177/1550147719866140
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719866140
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719866140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiqiang Shen & Chuanlin Zhang & Xiaona Zhang & Jinglun Shi, 2019. "A fully distributed deployment algorithm for underwater strong k-barrier coverage using mobile sensors," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    2. András Frank, 2005. "On Kuhn's Hungarian Method—A tribute from Hungary," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 2-5, February.
    3. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    4. Nisse, Nicolas & Salch, Alexandre & Weber, Valentin, 2023. "Recovery of disrupted airline operations using k-maximum matching in graphs," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1061-1072.
    5. Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
    6. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.
    7. Omar Zatarain & Jesse Yoe Rumbo-Morales & Silvia Ramos-Cabral & Gerardo Ortíz-Torres & Felipe d. J. Sorcia-Vázquez & Iván Guillén-Escamilla & Juan Carlos Mixteco-Sánchez, 2023. "A Method for Perception and Assessment of Semantic Textual Similarities in English," Mathematics, MDPI, vol. 11(12), pages 1-20, June.
    8. Chenchen Ma & Jing Ouyang & Gongjun Xu, 2023. "Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 175-207, March.
    9. Winker, Peter, 2023. "Visualizing Topic Uncertainty in Topic Modelling," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277584, Verein für Socialpolitik / German Economic Association.
    10. Tran Hoang Hai, 2020. "Estimation of volatility causality in structural autoregressions with heteroskedasticity using independent component analysis," Statistical Papers, Springer, vol. 61(1), pages 1-16, February.
    11. P. Senthil Kumar & R. Jahir Hussain, 2016. "A Simple Method for Solving Fully Intuitionistic Fuzzy Real Life Assignment Problem," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 7(2), pages 39-61, April.
    12. Caplin, Andrew & Leahy, John, 2020. "Comparative statics in markets for indivisible goods," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 80-94.
    13. Biró, Péter & Gudmundsson, Jens, 2021. "Complexity of finding Pareto-efficient allocations of highest welfare," European Journal of Operational Research, Elsevier, vol. 291(2), pages 614-628.
    14. Sallam, Gamal & Baroudi, Uthman, 2020. "A two-stage framework for fair autonomous robot deployment using virtual forces," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 35-50.
    15. Péter Biró & Flip Klijn & Xenia Klimentova & Ana Viana, 2021. "Shapley-Scarf Housing Markets: Respecting Improvement, Integer Programming, and Kidney Exchange," Working Papers 1235, Barcelona School of Economics.
    16. Michal Brylinski, 2014. "eMatchSite: Sequence Order-Independent Structure Alignments of Ligand Binding Pockets in Protein Models," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-15, September.
    17. Chiwei Yan & Helin Zhu & Nikita Korolko & Dawn Woodard, 2020. "Dynamic pricing and matching in ride‐hailing platforms," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 705-724, December.
    18. Fanrong Xie & Anuj Sharma & Zuoan Li, 2022. "An alternate approach to solve two-level priority based assignment problem," Computational Optimization and Applications, Springer, vol. 81(2), pages 613-656, March.
    19. Talmor, Irit, 2022. "Solving the problem of maximizing diversity in public sector teams," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    20. Igor Custodio João & Andre Lucas & Julia Schaumburg, 2021. "Clustering Dynamics and Persistence for Financial Multivariate Panel Data," Tinbergen Institute Discussion Papers 21-040/III, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:8:p:1550147719866140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.