IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v30y2019i4p662-671.html
   My bibliography  Save this article

Feasibility of wastewater resource recovery using pilot-scale membrane reactor with long-term operation

Author

Listed:
  • Emmanuel A Odey
  • Kaijun Wang
  • Zifu Li
  • Abdulmoseen S Giwa
  • Bodjui O Abo

Abstract

With the growing interest in resource recovery from wastewater, research has been put forward to realize this aim using different approaches. Here, we considered several conditions necessary for the experiment, with the primary goal of recovering concentrates suitable for biogas recovery and water reuse through the pilot-scale membrane reactor (PSMR). The new concept enables the feasibility of recovering permeates and concentrates directly from the PSMR. From the results obtained, permeate chemical oxygen demand was within 20 mg/L to 38 mg/L; the total nitrogen yielded an average value of 22.14 ± 3.53 mg/L; ammonia yielded an average value of 13.34 ± 1.18 mg/L; and the total phosphorus presented a value of 0.46 ± 0.32 mg/L. Permeates recovered from the experiment feature potential use for agriculture, groundwater, and lake recharge, as the chemical oxygen demand, total nitrogen, total phosphorus, and ammonia contents are low and acceptable for these purposes. Concentrates from two days of solid retention time ranged from 6050 mg/L to 10,000 mg/L, which was suitable for anaerobic digestion for biogas recovery. A further experiment is suggested to enable the removal of more ammonia, total phosphorus, and total nitrogen in permeate to enable its use for a domestic purpose.

Suggested Citation

  • Emmanuel A Odey & Kaijun Wang & Zifu Li & Abdulmoseen S Giwa & Bodjui O Abo, 2019. "Feasibility of wastewater resource recovery using pilot-scale membrane reactor with long-term operation," Energy & Environment, , vol. 30(4), pages 662-671, June.
  • Handle: RePEc:sae:engenv:v:30:y:2019:i:4:p:662-671
    DOI: 10.1177/0958305X18802782
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X18802782
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X18802782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Quanguo & Hu, Jianjun & Lee, Duu-Jong, 2016. "Biogas from anaerobic digestion processes: Research updates," Renewable Energy, Elsevier, vol. 98(C), pages 108-119.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zareei, Samira, 2018. "Project scheduling for constructing biogas plant using critical path method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 756-759.
    2. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    3. Dandikas, Vasilis & Heuwinkel, Hauke & Lichti, Fabian & Eckl, Thomas & Drewes, Jörg E. & Koch, Konrad, 2018. "Correlation between hydrolysis rate constant and chemical composition of energy crops," Renewable Energy, Elsevier, vol. 118(C), pages 34-42.
    4. Lavagnolo, Maria Cristina & Girotto, Francesca & Rafieenia, Razieh & Danieli, Luciano & Alibardi, Luca, 2018. "Two-stage anaerobic digestion of the organic fraction of municipal solid waste – Effects of process conditions during batch tests," Renewable Energy, Elsevier, vol. 126(C), pages 14-20.
    5. Qu, Guangfei & Lv, Pei & Cai, Yingying & Tu, Can & Ma, Xi & Ning, Ping, 2020. "Enhanced anaerobic fermentation of dairy manure by microelectrolysis in electric and magnetic fields," Renewable Energy, Elsevier, vol. 146(C), pages 2758-2765.
    6. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    7. Damaceno, Felippe Martins & Chiarelotto, Maico & Pires Salcedo Restrepo, Juan C. & Buligon, Eduardo Luiz & Costa, Luiz Antonio de Mendonça & de Lucas Junior, Jorge & Costa, Mônica Sarolli Silva de Men, 2019. "Anaerobic co-digestion of sludge cake from poultry slaughtering wastewater treatment and sweet potato: Energy and nutrient recovery," Renewable Energy, Elsevier, vol. 133(C), pages 489-499.
    8. Hartung, Christina & Andrade, Diana & Dandikas, Vasilis & Eickenscheidt, Tim & Drösler, Matthias & Zollfrank, Cordt & Heuwinkel, Hauke, 2020. "Suitability of paludiculture biomass as biogas substrate − biogas yield and long-term effects on anaerobic digestion," Renewable Energy, Elsevier, vol. 159(C), pages 64-71.
    9. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Biogas from Agri-Food and Agricultural Waste Can Appreciate Agro-Ecosystem Services: The Case Study of Emilia Romagna Region," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    10. Mhatre, Apurv & Gore, Suhas & Mhatre, Akanksha & Trivedi, Nitin & Sharma, Manju & Pandit, Reena & Anil, Annamma & Lali, Arvind, 2019. "Effect of multiple product extractions on bio-methane potential of marine macrophytic green alga Ulva lactuca," Renewable Energy, Elsevier, vol. 132(C), pages 742-751.
    11. Diamantis, Vasileios & Eftaxias, Alexandros & Stamatelatou, Katerina & Noutsopoulos, Constantinos & Vlachokostas, Christos & Aivasidis, Alexandros, 2021. "Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes," Renewable Energy, Elsevier, vol. 168(C), pages 438-447.
    12. Dehkordi, Seyed Mohammad Mehdi Noorbakhsh & Jahromi, Ahmad Reza Taghipour & Ferdowsi, Ali & Shumal, Mohammad & Dehnavi, Ali, 2020. "Investigation of biogas production potential from mechanical separated municipal solid waste as an approach for developing countries (case study: Isfahan-Iran)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Thomas Quaid & M. Toufiq Reza, 2021. "Carbon Capture from Biogas by Deep Eutectic Solvents: A COSMO Study to Evaluate the Effect of Impurities on Solubility and Selectivity," Clean Technol., MDPI, vol. 3(2), pages 1-13, June.
    14. Jay N. Meegoda & Brian Li & Kush Patel & Lily B. Wang, 2018. "A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion," IJERPH, MDPI, vol. 15(10), pages 1-16, October.
    15. Abunde Neba, F. & Asiedu, Nana Y. & Addo, Ahmad & Morken, John & Østerhus, Stein W. & Seidu, Razak, 2020. "A coupled modeling of design and investment parameters for optimal operation of methane bioreactors: Attainable region concept approach," Renewable Energy, Elsevier, vol. 148(C), pages 1054-1064.
    16. Ievgeniia Morozova & Nadiia Nikulina & Hans Oechsner & Johannes Krümpel & Andreas Lemmer, 2020. "Effects of Increasing Nitrogen Content on Process Stability and Reactor Performance in Anaerobic Digestion," Energies, MDPI, vol. 13(5), pages 1-19, March.
    17. Vondra, Marek & Touš, Michal & Teng, Sin Yong, 2019. "Digestate Evaporation Treatment in Biogas Plants: A Techno-economic Assessment by Monte Carlo, Neural Networks and Decision Trees," MPRA Paper 95770, University Library of Munich, Germany.
    18. Díaz-Trujillo, Luis Alberto & Nápoles-Rivera, Fabricio, 2019. "Optimization of biogas supply chain in Mexico considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 139(C), pages 1227-1240.
    19. Santos-Clotas, Eric & Cabrera-Codony, Alba & Martín, Maria J., 2020. "Coupling adsorption with biotechnologies for siloxane abatement from biogas," Renewable Energy, Elsevier, vol. 153(C), pages 314-323.
    20. Kucharska, Karolina & Hołowacz, Iwona & Konopacka-Łyskawa, Donata & Rybarczyk, Piotr & Kamiński, Marian, 2018. "Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels," Renewable Energy, Elsevier, vol. 129(PA), pages 384-408.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:30:y:2019:i:4:p:662-671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.