IDEAS home Printed from https://ideas.repec.org/a/ris/ecoint/0995.html
   My bibliography  Save this article

Botswana's Gender Wage Differences: Evidence from Cross-Sectional Quantile Regression Analysis

Author

Listed:
  • Motswapong, Masedi

    (Department of Economics and Economic History, Faculty of Business and Economic Sciences, Nelson Mandela University, Gqeberha, South Africa and Botswana Institute for Development Policy Analysis, Gaborone, Botswana)

  • Dyubhele, Nolontu Stella

    (Department of Economics and Economic History, Faculty of Business and Economic Sciences, Nelson Mandela University, Gqeberha, South Africa)

  • Qabhobho, Thobekile

    (Department of Economics and Economic History, Faculty of Business and Economic Sciences, Nelson Mandela University, Gqeberha, South Africa)

Abstract

both the unconditional decomposition technique and the quantile regression model. The research shows that returns to schooling differ significantly between males and females using quantile regression models. As one’s education level rises, both private returns to education tend to increase. Applying the decomposition analysis also reveals that the pay gap between men and women widens as levels rise along the salary distribution. The data do not support the “sticky floor” effect, while the “glass ceiling” effect suggests that many women may not be in leadership positions. The study’s policy implications include the need to continue investing in human capital development and draw men into heavily feminised industries. Differenze salariali di genere in Botswana: evidenze da un’analisi trasversale di regressione dei quantili L’oggetto di questo studio è la differenza retributiva tra uomini e donne in Botswana. I metodi usati sono la tecnica di scomposizione non condizionale e il modello di regressione dei quantili. La ricerca dimostra che il rendimento dell’istruzione è significativamente differente tra maschi e femmine se si utilizzano modelli di regressione dei quantili. Più è alto il livello di istruzione, maggiore è il rendimento dell’istruzione sia per gli uomini che per le donne. Applicando l’analisi di scomposizione si scopre che la differenza salariale tra uomini e donne è più ampia man mano che le retribuzioni aumentano. I dati non confermano l’effetto “pavimento vischioso”, mentre l’effetto “soffitto di cristallo” suggerisce che non sono molte le donne che ricoprono posizioni dirigenziali. Tra le politiche suggerite da questo studio vi è la necessità di investire sullo sviluppo del capitale umano e di introdurre lavoratori uomini nelle industrie dove vi è forte presenza femminile.

Suggested Citation

  • Motswapong, Masedi & Dyubhele, Nolontu Stella & Qabhobho, Thobekile, 2025. "Botswana's Gender Wage Differences: Evidence from Cross-Sectional Quantile Regression Analysis," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 78(2), pages 305-336.
  • Handle: RePEc:ris:ecoint:0995
    as

    Download full text from publisher

    File URL: https://www.iei1946.it/article/pdf/download/1049/botswanas-gender-wage-differences-evidence-from-cross-sectional-quantile-regression-analysis
    File Function: Full text
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Wages; Gender; Inequality; Education; Employment;
    All these keywords.

    JEL classification:

    • J01 - Labor and Demographic Economics - - General - - - Labor Economics: General
    • J08 - Labor and Demographic Economics - - General - - - Labor Economics Policies
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials
    • J71 - Labor and Demographic Economics - - Labor Discrimination - - - Hiring and Firing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:ecoint:0995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Angela Procopio (email available below). General contact details of provider: https://edirc.repec.org/data/cacogit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.