IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0331225.html
   My bibliography  Save this article

Shaping resilient flood control system design through net present value assessments

Author

Listed:
  • Ghazi Al-Rawas
  • Mohammad Reza Nikoo
  • Mohammad Reza Hassani
  • Seyyed Farid Mousavi Janbehsarayi
  • Hossein Hosseinzadeh Kouhi
  • Mohammad Hossein Niksokhan

Abstract

Designing sustainable Flood Control Systems (FCSs) requires considering both the resiliency of the system and the long-term viability of investments. In this regard, our research aimed at integrating concepts of hydrological resiliency and cost-benefit analysis to design the most effective flood control network. To do so, first, the Storm Water Management Model (SWMM) was developed for simulating flood condition. Then, this model was coupled with the Pareto Envelope-based Selection Algorithm-II (PESA-II) to identify the optimal channels’ characteristics and generate a range of non-dominated solutions that balance implementation costs, system resilience (measured by the Simple Urban Flood Resilience Index, SUFRI), and overflow. Different flood management scenarios extracted for North Al-Batinah, Oman, a region under extreme flood events, exhibited high resilience and effectively reduced system overflow with reasonable costs. This highlights the value of optimization in resolving the conflicting objectives inherent in FCS design. Finally, net present values evaluated the long-term economic viability of each management scenario. The results revealed that strategies with moderate design costs and higher SUFRI values yielded optimal financial returns and substantial flood risk reductions. Also, the selected alternative based on net present value could reduce flood volume by 77.9%. This research underscores the critical role of incorporating resilience and cost-benefit analysis into FCS design to enhance the decision-making process.

Suggested Citation

  • Ghazi Al-Rawas & Mohammad Reza Nikoo & Mohammad Reza Hassani & Seyyed Farid Mousavi Janbehsarayi & Hossein Hosseinzadeh Kouhi & Mohammad Hossein Niksokhan, 2025. "Shaping resilient flood control system design through net present value assessments," PLOS ONE, Public Library of Science, vol. 20(9), pages 1-18, September.
  • Handle: RePEc:plo:pone00:0331225
    DOI: 10.1371/journal.pone.0331225
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0331225
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0331225&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0331225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heiko Apel & Annegret Thieken & Bruno Merz & Günter Blöschl, 2006. "A Probabilistic Modelling System for Assessing Flood Risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 79-100, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    2. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. H. Moel & J. Aerts, 2011. "Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 407-425, July.
    4. Melanie Kunz & Adrienne Grêt-Regamey & Lorenz Hurni, 2011. "Visualization of uncertainty in natural hazards assessments using an interactive cartographic information system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1735-1751, December.
    5. Lindsay Beevers & Lila Collet & Gordon Aitken & Claire Maravat & Annie Visser, 2020. "The influence of climate model uncertainty on fluvial flood hazard estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2489-2510, December.
    6. Xin Miao & Yanhong Tang & Bao Xi, 2014. "The role of coupling and embeddedness in risk evolution: rethinking the snow event in early 2008, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 53-61, March.
    7. Sebastiaan N. Jonkman & Ruben Jongejan & Bob Maaskant, 2011. "The Use of Individual and Societal Risk Criteria Within the Dutch Flood Safety Policy—Nationwide Estimates of Societal Risk and Policy Applications," Risk Analysis, John Wiley & Sons, vol. 31(2), pages 282-300, February.
    8. Jean-Luc Kok & Malte Grossmann, 2010. "Large-scale assessment of flood risk and the effects of mitigation measures along the Elbe River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(1), pages 143-166, January.
    9. Si, Deng-Kui & Li, Xiao-Lin & Xu, XuChuan & Fang, Yi, 2021. "The risk spillover effect of the COVID-19 pandemic on energy sector: Evidence from China," Energy Economics, Elsevier, vol. 102(C).
    10. Selene Perazzini & Giorgio Stefano Gnecco & Fabio Pammolli, 2020. "A Public-Private Insurance Model for Natural Risk Management: an Application to Seismic and Flood Risks on Residential Buildings in Italy," Papers 2006.05840, arXiv.org.
    11. Mark C. Quigley & Luke G. Bennetts & Patricia Durance & Petra M. Kuhnert & Mark D. Lindsay & Keith G. Pembleton & Melanie E. Roberts & Christopher J. White, 2019. "The provision and utility of science and uncertainty to decision-makers: earth science case studies," Environment Systems and Decisions, Springer, vol. 39(3), pages 307-348, September.
    12. María Bermúdez & Andreas Paul Zischg, 2018. "Sensitivity of flood loss estimates to building representation and flow depth attribution methods in micro-scale flood modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1633-1648, July.
    13. Sebastiaan N. Jonkman & Matthijs Kok & Johannes K. Vrijling, 2008. "Flood Risk Assessment in the Netherlands: A Case Study for Dike Ring South Holland," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1357-1374, October.
    14. Xiuquan Deng & Zhu Lu & Xinmiao Yang & Qiuhong Zhao & Dehua Gao & Bing Bai, 2018. "Formation Mechanism and Coping Strategy of Public Emergency for Urban Sustainability: A Perspective of Risk Propagation in the Sociotechnical System," Sustainability, MDPI, vol. 10(2), pages 1-24, February.
    15. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    16. Giuliano Di Baldassarre & Attilio Castellarin & Alberto Montanari & Armando Brath, 2009. "Probability-weighted hazard maps for comparing different flood risk management strategies: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 479-496, September.
    17. Mel Oliveira Guirro & Gean Paulo Michel, 2023. "Hydrological and hydrodynamic reconstruction of a flood event in a poorly monitored basin: a case study in the Rolante River, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 723-743, May.
    18. J. Oliver & X. S. Qin & O. Larsen & M. Meadows & M. Fielding, 2018. "Probabilistic flood risk analysis considering morphological dynamics and dike failure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 287-307, March.
    19. Qing Yang & Chen Zuo & Xingxing Liu & Zhichao Yang & Hui Zhou, 2020. "Risk Response for Municipal Solid Waste Crisis Using Ontology-Based Reasoning," IJERPH, MDPI, vol. 17(9), pages 1-23, May.
    20. Selene Perazzini & Giorgio Gnecco & Fabio Pammolli, 2024. "A Public–Private Insurance Model for Disaster Risk Management: An Application to Italy," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 10(1), pages 225-267, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0331225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.