IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0330024.html

Dual-model approach for concurrent forecasting of electricity prices and loads in smart grids: Comparison of sparse encoder NAR and GA-optimized LSTM

Author

Listed:
  • Nasir Nauman
  • Sheeraz Akram
  • Muhammad Rashid
  • Arfan Jaffar
  • Sohail Masood Bhatti
  • Benish Fida

Abstract

Accurate forecasting of electricity prices and loads is challenging in smart grids due to the strong interdependence between load and price. To address this, we propose two deep recurrent neural network models that forecast both load and price concurrently. The first model, Sparse Encoder Nonlinear Autoregressive Network (SENARX), introduces a sparse encoder for enhanced feature extraction and nonlinear autoregression with exogenous inputs. The second, GA-LSTM, integrates Long Short-Term Memory with genetic algorithm-based optimization to improve forecasting accuracy and robustness. Both models were evaluated using ISO New England data and outperformed benchmark models. The NARX model achieves MAPE values of 0.03 for load and 0.08 for price forecasting, while LSTM shows MAPE values of 1.53 and 1.91, respectively. The models demonstrate promising potential for real-time forecasting in smart grids. This paper presents a comparative study of SENARX and GA-LSTM against traditional methods such as ARIMA, SVM, and Bayesian Networks using market data from EPEX (Europe), IEX (India), and JEPX (Japan). SENARX achieved a MAPE of 3.82% (EPEX) and 4.13% (IEX), while GA-LSTM reached RMSE of 27.02 MW (EPEX) and 29.33 MW (JEPX). Compared to ARIMA (MAPE: 6.57%−7.21%, RMSE: up to 48.74 MW), the proposed models improved accuracy by over 40%. SENARX also trained faster (2385s vs 3100s for ARIMA). GA-LSTM showed faster convergence and lower error rates, and SENARX was robust against data noise. These characteristics make the models suitable for short-term load forecasting in dynamic and uncertain markets. Future work will test their performance under extreme events like peak demand and climate anomalies.

Suggested Citation

  • Nasir Nauman & Sheeraz Akram & Muhammad Rashid & Arfan Jaffar & Sohail Masood Bhatti & Benish Fida, 2025. "Dual-model approach for concurrent forecasting of electricity prices and loads in smart grids: Comparison of sparse encoder NAR and GA-optimized LSTM," PLOS ONE, Public Library of Science, vol. 20(9), pages 1-22, September.
  • Handle: RePEc:plo:pone00:0330024
    DOI: 10.1371/journal.pone.0330024
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0330024
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0330024&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0330024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ghasemi, A. & Shayeghi, H. & Moradzadeh, M. & Nooshyar, M., 2016. "A novel hybrid algorithm for electricity price and load forecasting in smart grids with demand-side management," Applied Energy, Elsevier, vol. 177(C), pages 40-59.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    2. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    3. Zhou, Chenyu & Shen, Yun & Wu, Haixin & Wang, Jianhong, 2022. "Using fractional discrete Verhulst model to forecast Fujian's electricity consumption in China," Energy, Elsevier, vol. 255(C).
    4. Ethem Çanakoğlu & Esra Adıyeke, 2020. "Comparison of Electricity Spot Price Modelling and Risk Management Applications," Energies, MDPI, vol. 13(18), pages 1-22, September.
    5. Zhang, Wenbin & Tian, Lixin & Wang, Minggang & Zhen, Zaili & Fang, Guochang, 2016. "The evolution model of electricity market on the stable development in China and its dynamic analysis," Energy, Elsevier, vol. 114(C), pages 344-359.
    6. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    7. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    8. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
    9. Ghasemi-Marzbali, Ali, 2020. "Multi-area multi-source automatic generation control in deregulated power system," Energy, Elsevier, vol. 201(C).
    10. Yu, Mengmeng & Hong, Seung Ho, 2017. "Incentive-based demand response considering hierarchical electricity market: A Stackelberg game approach," Applied Energy, Elsevier, vol. 203(C), pages 267-279.
    11. Cui, Jia & Yu, Renzhe & Zhao, Dongbo & Yang, Junyou & Ge, Weichun & Zhou, Xiaoming, 2019. "Intelligent load pattern modeling and denoising using improved variational mode decomposition for various calendar periods," Applied Energy, Elsevier, vol. 247(C), pages 480-491.
    12. Lee, Eunjung & Lee, Kyungeun & Lee, Hyoseop & Kim, Euncheol & Rhee, Wonjong, 2019. "Defining virtual control group to improve customer baseline load calculation of residential demand response," Applied Energy, Elsevier, vol. 250(C), pages 946-958.
    13. Xu, Yan & Yu, Qi & Du, Pei & Wang, Jianzhou, 2024. "A paradigm shift in solar energy forecasting: A novel two-phase model for monthly residential consumption," Energy, Elsevier, vol. 305(C).
    14. Jinbo Cai & Wenze Li & Wenjie Wang, 2025. "Electricity Market Predictability: Virtues of Machine Learning and Links to the Macroeconomy," Papers 2507.07477, arXiv.org.
    15. Nasir Ayub & Muhammad Irfan & Muhammad Awais & Usman Ali & Tariq Ali & Mohammed Hamdi & Abdullah Alghamdi & Fazal Muhammad, 2020. "Big Data Analytics for Short and Medium-Term Electricity Load Forecasting Using an AI Techniques Ensembler," Energies, MDPI, vol. 13(19), pages 1-21, October.
    16. Mbungu, Nsilulu T. & Bansal, Ramesh C. & Naidoo, Raj M. & Bettayeb, Maamar & Siti, Mukwanga W. & Bipath, Minnesh, 2020. "A dynamic energy management system using smart metering," Applied Energy, Elsevier, vol. 280(C).
    17. Zhang, Jinliang & Siya, Wang & Zhongfu, Tan & Anli, Sun, 2023. "An improved hybrid model for short term power load prediction," Energy, Elsevier, vol. 268(C).
    18. Sana Mujeeb & Nadeem Javaid & Manzoor Ilahi & Zahid Wadud & Farruh Ishmanov & Muhammad Khalil Afzal, 2019. "Deep Long Short-Term Memory: A New Price and Load Forecasting Scheme for Big Data in Smart Cities," Sustainability, MDPI, vol. 11(4), pages 1-29, February.
    19. Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
    20. Seyedeh Narjes Fallah & Ravinesh Chand Deo & Mohammad Shojafar & Mauro Conti & Shahaboddin Shamshirband, 2018. "Computational Intelligence Approaches for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions," Energies, MDPI, vol. 11(3), pages 1-31, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0330024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.