IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0327031.html

Forecasting electricity consumption of India through nighttime satellite imagery

Author

Listed:
  • Darshini R.
  • Akshay Kumar
  • Maria Anu Vensuslaus
  • Rishikeshan C. A.
  • Joshua Thomas John Victor

Abstract

Amidst a growing need for effective energy management, government policies increasingly rely on accurate electricity consumption forecasts to make informed decisions on renewable energy adoption. This study investigates the predictive capabilities of night light satellite imagery in forecasting electricity usage in India, aligning with Sustainable Development Goals 7 and 10. Utilizing data from the VIIRS satellite and NASA’s Black Marble product, the research employs various LSTM models to analyse electricity consumption trends. Additionally, state-wise analyses have been conducted by applying k-means clustering to capture spatial consumption variations. By demonstrating the strong correlation between night lights and electricity consumption, the study emphasizes the utility of satellite imagery for actionable insights into energy dynamics. The results emphasize the viability of night light data as a dependable indicator of electricity demand, with MAPE values below 10% and RMSE values below 20 MU. It also highlights the transformative impact of remote sensing technologies in advancing sustainable development agendas and highlights the pivotal role of night light imagery in energy forecasting initiatives.

Suggested Citation

  • Darshini R. & Akshay Kumar & Maria Anu Vensuslaus & Rishikeshan C. A. & Joshua Thomas John Victor, 2025. "Forecasting electricity consumption of India through nighttime satellite imagery," PLOS ONE, Public Library of Science, vol. 20(9), pages 1-42, September.
  • Handle: RePEc:plo:pone00:0327031
    DOI: 10.1371/journal.pone.0327031
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0327031
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0327031&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0327031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Giacomo Falchetta & Michel Noussan, 2019. "Interannual Variation in Night-Time Light Radiance Predicts Changes in National Electricity Consumption Conditional on Income-Level and Region," Energies, MDPI, vol. 12(3), pages 1-20, January.
    2. Li, Shuyi & Cheng, Liang & Liu, Xiaoqiang & Mao, Junya & Wu, Jie & Li, Manchun, 2019. "City type-oriented modeling electric power consumption in China using NPP-VIIRS nighttime stable light data," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Liang & Lin, Yongpeng & Yang, Peng & Liu, Xiaosheng & He, Yuanrong & Xie, Zhiying & Yu, Peng, 2024. "Quantifying the inequality of urban electric power consumption and its evolutionary drivers in countries along the belt and road: Insights from satellite perspective," Energy, Elsevier, vol. 312(C).
    2. Lu, Wenlu & Zhang, Da & He, Chunyang & Zhang, Xiwen, 2024. "Modeling the spatiotemporal dynamics of electric power consumption in China from 2000 to 2020 based on multisource remote sensing data and machine learning," Energy, Elsevier, vol. 308(C).
    3. Li, Peiran & Zhang, Haoran & Wang, Xin & Song, Xuan & Shibasaki, Ryosuke, 2020. "A spatial finer electric load estimation method based on night-light satellite image," Energy, Elsevier, vol. 209(C).
    4. Hu, Ting & Wang, Ting & Yan, Qingyun & Chen, Tiexi & Jin, Shuanggen & Hu, Jun, 2022. "Modeling the spatiotemporal dynamics of global electric power consumption (1992–2019) by utilizing consistent nighttime light data from DMSP-OLS and NPP-VIIRS," Applied Energy, Elsevier, vol. 322(C).
    5. Du, Mengbing & Ruan, Jianhui & Zhang, Li & Niu, Muchuan & Zhang, Zhe & Xia, Lang & Qian, Shuangyue & Chen, Chuchu, 2024. "China's local-level monthly residential electricity power consumption monitoring," Applied Energy, Elsevier, vol. 359(C).
    6. Poignant, Adrian, 2025. "Electricity and female employment: Evidence from Tajikistan’s winter energy crisis," Journal of Development Economics, Elsevier, vol. 172(C).
    7. Wang, Jiaxin & Lu, Feng, 2021. "Modeling the electricity consumption by combining land use types and landscape patterns with nighttime light imagery," Energy, Elsevier, vol. 234(C).
    8. Tian, Zhiguang & Mu, Xianzhong, 2024. "Towards China's dual-carbon target: Energy efficiency analysis of cities in the Yellow River Basin based on a “geography and high-quality development” heterogeneity framework," Energy, Elsevier, vol. 306(C).
    9. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0327031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.