Author
Listed:
- Xiangyue Zhang
- Yuyun Kang
- Chao Li
- Wenjing Wang
- Keqing Wang
Abstract
Cryptocurrency is a new type of asset that has emerged with the advancement of financial technology, creating significant opportunities for research. bitcoin is the most valuable cryptocurrency and holds significant research value. However, due to the significant fluctuations in bitcoin’s value in recent years, predicting its value and ensuring the reliability of these predictions, which have become crucial, have gained increasing importance. A method that combines Long Short-term Memory (LSTM) with conformal prediction is proposed in this paper. Initially, the high-dimensional features in the dataset are divided using the Spearman correlation coefficient method, and features below 0.75 and above 0.95 are excluded. Subsequently, an LSTM model is built, and data are fed into it and the data is used to train the model to generate predictions. Finally, the predicted values generated by the LSTM are fed into the conformal prediction model, and confidence intervals for these values are generated to verify their reliability. In the conformal prediction model, the quantile loss of the loss function is defined, and an Average Coverage Interval (ACI) predictor is designed to improve the accuracy of the results. The experiments are conducted using data from CoinGecko, which is a publicly available data. The results show that the LSTM-conformal prediction (LSTM-CP) combination improves reliability.
Suggested Citation
Xiangyue Zhang & Yuyun Kang & Chao Li & Wenjing Wang & Keqing Wang, 2025.
"LSTM-conformal forecasting-based bitcoin forecasting method for enhancing reliability,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-23, May.
Handle:
RePEc:plo:pone00:0319008
DOI: 10.1371/journal.pone.0319008
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0319008. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.