IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0318228.html
   My bibliography  Save this article

Prediction of pavement water film depth and estimation of critical rainfall conditions for refined road safety management: A simulation study

Author

Listed:
  • Jinliang Xu
  • Wenzhen Lv
  • Chao Gao
  • Tian Xin
  • Xiantong Liu
  • Yahao Hou

Abstract

The development of a smart expressway ensuring all-weather safe access represents the future trajectory of transportation infrastructure. A key task in this advancement is the precise prediction of water film depth (WFD) on road surfaces. Conventional WFD prediction models often assume constant grade and cross slope, an oversimplification that may affect predictive accuracy. In this study, typical highway alignments were meticulously modeled in three dimensions (3D) using Building Information Modeling (BIM) technology, and WFD simulations were conducted using a coupled discrete phase model and Eulerian wall film model (DE-WFD model). Simulation results revealed that the DE-WFD model consistently predicts higher WFD compared to the RRL and PAVDRN models. In contrast, its predictions are approximately 0.12 mm (40%) lower than those of the Gallaway model when rainfall intensity is below 7.8 mm/h. At higher rainfall intensities, DE-WFD predictions closely align with the Gallaway model. Field tests conducted with a feeler gauge of 0.01 mm resolution confirmed the accuracy of these predictions, showing a maximum deviation of just 7% between predicted and measured values. Additionally, the study assessed the sensitivity of the DE-WFD model to variations in grade and cross slope along the road length. Results indicated that on road surfaces employing dispersed drainage, WFD is approximately 6% higher at sag vertical curves and lower at crest vertical curves compared to constant slope segments. Moreover, WFD increases by over 35% at superelevation transitions. To quantify the impact of rainfall on road safety, a critical WFD parameter was developed. This parameter defines the maximum WFD under specific rainfall conditions that reduces the pavement-tire tangential friction coefficient to a level corresponding to the standard stopping sight distance. Using the DE-WFD model, simulations of hourly rainfall intensity and duration identified conditions under which WFD reaches this critical value for various roadway geometries. These findings provide valuable references for the precision management of highway operational safety. This suggests that traffic safety authorities should implement warning and intervention measures when critical rainfall conditions are exceeded to ensure driving safety.

Suggested Citation

  • Jinliang Xu & Wenzhen Lv & Chao Gao & Tian Xin & Xiantong Liu & Yahao Hou, 2025. "Prediction of pavement water film depth and estimation of critical rainfall conditions for refined road safety management: A simulation study," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-23, February.
  • Handle: RePEc:plo:pone00:0318228
    DOI: 10.1371/journal.pone.0318228
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0318228
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0318228&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0318228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ding, Hongbing & Zhang, Yu & Sun, Chunqian & Yang, Yan & Wen, Chuang, 2022. "Numerical simulation of supersonic condensation flows using Eulerian-Lagrangian and Eulerian wall film models," Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Hongbing & Zhang, Panpan & Dong, Yuanyuan & Yang, Yan, 2024. "Optimization of hydrogen recirculation ejector for proton-exchange membrane fuel cells (PEMFC) systems considering non-equilibrium condensation," Renewable Energy, Elsevier, vol. 237(PC).
    2. Wang, Shiwei & Wang, Chao & Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang, 2023. "Joule-Thomson effect and flow behavior for energy-efficient dehydration of high-pressure natural gas in supersonic separator," Energy, Elsevier, vol. 279(C).
    3. Hosseini, Seyed Ali & Lakzian, Esmail & Zarei, Daryoush & Zare, Mehdi, 2024. "Design and optimization of slot number in supercooled vapor suction in steam turbine blades for reducing the wetness," Energy, Elsevier, vol. 301(C).
    4. Jia, Huijun & Wen, Jiaqi & Xu, Xinrui & Liu, Miaomiao & Fang, Lide & Zhao, Ning, 2024. "Spatial and temporal characteristic information parameter measurement of interfacial wave using ultrasonic phased array method," Energy, Elsevier, vol. 292(C).
    5. Ding, Hongbing & Dong, Yuanyuan & Zhang, Yu & Yang, Yan & Wen, Chuang, 2023. "Energy efficiency assessment of hydrogen recirculation ejectors for proton exchange membrane fuel cell (PEMFC) system," Applied Energy, Elsevier, vol. 346(C).
    6. Wang, Shiwei & Wang, Chao & Ding, Hongbing & Li, Shujuan, 2024. "Evaluation of dynamic behaviors in varied swirling flows for high-pressure offshore natural gas supersonic dehydration," Energy, Elsevier, vol. 300(C).
    7. Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang & Yang, Yan, 2023. "High-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technology," Applied Energy, Elsevier, vol. 339(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0318228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.