IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0317355.html
   My bibliography  Save this article

Modulation pattern recognition method of wireless communication automatic system based on IABLN algorithm in intelligent system

Author

Listed:
  • Ting Xie
  • Xing Han

Abstract

The aim of this study is to address the limitations of convolutional networks in recognizing modulation patterns. These networks are unable to utilize temporal information effectively for feature extraction and modulation pattern recognition, resulting in inefficient modulation pattern recognition. To address this issue, a signal modulation recognition method based on a two-way interactive temporal attention network algorithm has been developed. A two-way interactive temporal network is designed on the basis of the long and short-term memory network with the objective of enhancing the contextual connection of the temporal network. The output of the temporal network is attentively weighted using the soft attention mechanism. The proposed algorithm exhibited enhanced overall, average, and maximum recognition rates at varying signal-to-noise ratios, with an increase of 10.34%, 8.33%, and 3.33%, respectively, in comparison to other algorithms within the Radio Machine Learning (RML) 2016.10b dataset. Furthermore, the modulated signal recognition accuracy was as high as 92.84%, with an average increase in the Kappa coefficient of 12.28%. The Kappa coefficient in the Communication Signal Processing Benchmark for Machine Learning (CSPB.ML2018) 2018 dataset was 0.62, representing an average increase of 10.32% over other algorithms. The results demonstrate that the proposed recognition method can enhance the network’s accuracy in recognizing modulated signals. Moreover, it has potential applications in modulation pattern recognition in automatic systems for wireless communications.

Suggested Citation

  • Ting Xie & Xing Han, 2025. "Modulation pattern recognition method of wireless communication automatic system based on IABLN algorithm in intelligent system," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-22, January.
  • Handle: RePEc:plo:pone00:0317355
    DOI: 10.1371/journal.pone.0317355
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317355
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0317355&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0317355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Farshid Ashtiani & Alexander J. Geers & Firooz Aflatouni, 2022. "An on-chip photonic deep neural network for image classification," Nature, Nature, vol. 606(7914), pages 501-506, June.
    2. Logan G. Wright & Tatsuhiro Onodera & Martin M. Stein & Tianyu Wang & Darren T. Schachter & Zoey Hu & Peter L. McMahon, 2022. "Deep physical neural networks trained with backpropagation," Nature, Nature, vol. 601(7894), pages 549-555, January.
    3. Bruce G. Marcot & Anca M. Hanea, 2021. "What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?," Computational Statistics, Springer, vol. 36(3), pages 2009-2031, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan Cai & Yuesong Jiang & Wanqing Song & Kai-Hung Lu & Tongbo Zhu, 2024. "Short-Term Wind Turbine Blade Icing Wind Power Prediction Based on PCA-fLsm," Energies, MDPI, vol. 17(6), pages 1-15, March.
    2. Pouria Sanjari & Firooz Aflatouni, 2025. "A reconfigurable non-linear active metasurface for coherent wave down-conversion," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    3. Kilian D. Stenning & Jack C. Gartside & Luca Manneschi & Christopher T. S. Cheung & Tony Chen & Alex Vanstone & Jake Love & Holly Holder & Francesco Caravelli & Hidekazu Kurebayashi & Karin Everschor-, 2024. "Neuromorphic overparameterisation and few-shot learning in multilayer physical neural networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Seou Choi & Yannick Salamin & Charles Roques-Carmes & Rumen Dangovski & Di Luo & Zhuo Chen & Michael Horodynski & Jamison Sloan & Shiekh Zia Uddin & Marin Soljačić, 2024. "Photonic probabilistic machine learning using quantum vacuum noise," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Xia, Huosong & Wang, Yuan & Zhang, Justin Zuopeng & Zheng, Leven J. & Kamal, Muhammad Mustafa & Arya, Varsha, 2023. "COVID-19 fake news detection: A hybrid CNN-BiLSTM-AM model," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    6. Dimitrios C. Tzarouchis & Brian Edwards & Nader Engheta, 2025. "Programmable wave-based analog computing machine: a metastructure that designs metastructures," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    7. Lei Tong & Yali Bi & Yilun Wang & Kai Peng & Xinyu Huang & Wei Ju & Zhuiri Peng & Zheng Li & Langlang Xu & Runfeng Lin & Xiangxiang Yu & Wenhao Shi & Hui Yu & Huajun Sun & Kanhao Xue & Qiang He & Ming, 2024. "Programmable nonlinear optical neuromorphic computing with bare 2D material MoS2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Hengfei Yang & Shiyuan Yang & Debiao Meng & Chenghao Hu & Chaosheng Wu & Bo Yang & Peng Nie & Yuan Si & Xiaoyan Su, 2024. "Optimization of Analog Circuit Parameters Using Bidirectional Long Short-Term Memory Coupled with an Enhanced Whale Optimization Algorithm," Mathematics, MDPI, vol. 13(1), pages 1-24, December.
    9. Qianying Jin & Kristiaan Kerstens & Ignace Van de Woestyne, 2024. "Convex and nonconvex nonparametric frontier-based classification methods for anomaly detection," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1213-1239, December.
    10. Federico Ricci & Massimiliano Avana & Francesco Mariani, 2025. "Artificial Neural Networks as a Tool for High-Accuracy Prediction of In-Cylinder Pressure and Equivalent Flame Radius in Hydrogen-Fueled Internal Combustion Engines," Energies, MDPI, vol. 18(2), pages 1-23, January.
    11. Georgios Friligkos, 2023. "A framework for applying the Logistic Regression model to obtain predictive analytics for tennis matches," Technium, Technium Science, vol. 15(1), pages 60-74.
    12. Shuaifeng Li & Xiaoming Mao, 2024. "Training all-mechanical neural networks for task learning through in situ backpropagation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Ziyu Zhang & Binmin Wu & Yang Wang & Tianjun Cai & Mingze Ma & Chunyu You & Chang Liu & Guobang Jiang & Yuhang Hu & Xing Li & Xiang-Zhong Chen & Enming Song & Jizhai Cui & Gaoshan Huang & Suwit Kiravi, 2024. "Multilevel design and construction in nanomembrane rolling for three-dimensional angle-sensitive photodetection," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Lamia Lamrani & Christian Bongiorno & Marc Potters, 2025. "Optimal Data Splitting for Holdout Cross-Validation in Large Covariance Matrix Estimation," Papers 2503.15186, arXiv.org, revised Sep 2025.
    15. Lu Jiang & Xinyu Kang & Shan Huang & Bo Yang, 2022. "A refinement strategy for identification of scientific software from bioinformatics publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3293-3316, June.
    16. Mochamad Denny Surindra & Gusti Ahmad Fanshuri Alfarisy & Wahyu Caesarendra & Mohamad Iskandar Petra & Totok Prasetyo & Tegoeh Tjahjowidodo & Grzegorz M. Królczyk & Adam Glowacz & Munish Kumar Gupta, 2025. "Use of machine learning models in condition monitoring of abrasive belt in robotic arm grinding process," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 3345-3358, June.
    17. Tianyu Wang & Jialin Meng & Xufeng Zhou & Yue Liu & Zhenyu He & Qi Han & Qingxuan Li & Jiajie Yu & Zhenhai Li & Yongkai Liu & Hao Zhu & Qingqing Sun & David Wei Zhang & Peining Chen & Huisheng Peng & , 2022. "Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Md Tauhidul Islam & Zixia Zhou & Hongyi Ren & Masoud Badiei Khuzani & Daniel Kapp & James Zou & Lu Tian & Joseph C. Liao & Lei Xing, 2023. "Revealing hidden patterns in deep neural network feature space continuum via manifold learning," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    19. Shi, Wei & Min, Fuhong & Yang, Songtao, 2024. "Bifurcation dynamics and FPGA implementation of coupled Fitzhugh-Nagumo neuronal system," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    20. Meng, Huixing & Zhao, Shijun & Song, Wenjuan & Hu, Mengqian, 2025. "Virtual-reality-generated-data-driven Bayesian networks for risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 260(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0317355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.