Comparison of principal component analysis algorithms for imputation in agrometeorological data in high dimension and reduced sample size
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0315574
Download full text from publisher
References listed on IDEAS
- Henk Kiers, 1997. "Weighted least squares fitting using ordinary least squares algorithms," Psychometrika, Springer;The Psychometric Society, vol. 62(2), pages 251-266, June.
- Sentelhas, Paulo C. & Gillespie, Terry J. & Santos, Eduardo A., 2010. "Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada," Agricultural Water Management, Elsevier, vol. 97(5), pages 635-644, May.
- Julie Josse & Jérôme Pagès & François Husson, 2011. "Multiple imputation in principal component analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(3), pages 231-246, October.
- Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: I. Factors governing measurement accuracy," Agricultural Water Management, Elsevier, vol. 98(6), pages 899-920, April.
- Josse, Julie & Husson, François, 2016. "missMDA: A Package for Handling Missing Values in Multivariate Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i01).
- Omidreza Mikaeili & Mojtaba Shourian, 2024. "Improving Evapotranspiration Estimation in SWAT-Based Hydrologic Simulation through Data Assimilation in the SEBAL Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4101-4122, September.
- Mhawej, Mario & Caiserman, Arnaud & Nasrallah, Ali & Dawi, Ali & Bachour, Roula & Faour, Ghaleb, 2020. "Automated evapotranspiration retrieval model with missing soil-related datasets: The proposal of SEBALI," Agricultural Water Management, Elsevier, vol. 229(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shih-Lun Fang & Yi-Shan Lin & Sheng-Chih Chang & Yi-Lung Chang & Bing-Yun Tsai & Bo-Jein Kuo, 2024. "Using Artificial Intelligence Algorithms to Estimate and Short-Term Forecast the Daily Reference Evapotranspiration with Limited Meteorological Variables," Agriculture, MDPI, vol. 14(4), pages 1-20, March.
- Martí, Pau & López-Urrea, Ramón & Mancha, Luis A. & González-Altozano, Pablo & Román, Armand, 2024. "Seasonal assessment of the grass reference evapotranspiration estimation from limited inputs using different calibrating time windows and lysimeter benchmarks," Agricultural Water Management, Elsevier, vol. 300(C).
- Paredes, P. & Pereira, L.S. & Almorox, J. & Darouich, H., 2020. "Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables," Agricultural Water Management, Elsevier, vol. 240(C).
- Mekonnen, Yilkal Gebeyehu & Alamirew, Tena & Malede, Demelash Ademe & Pareeth, Sajid & Bantider, Amare & Chukalla, Abebe Demissie, 2024. "Tailoring the surface energy balance algorithm for land-improved (SEBALI) model using high-resolution land/use land cover for monitoring actual evapotranspiration," Agricultural Water Management, Elsevier, vol. 303(C).
- Traore, Seydou & Luo, Yufeng & Fipps, Guy, 2016. "Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages," Agricultural Water Management, Elsevier, vol. 163(C), pages 363-379.
- Paredes, Paula & Martins, Diogo S. & Pereira, Luis Santos & Cadima, Jorge & Pires, Carlos, 2018. "Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes," Agricultural Water Management, Elsevier, vol. 210(C), pages 340-353.
- Mhawej, Mario & Elias, Georgie & Nasrallah, Ali & Faour, Ghaleb, 2020. "Dynamic calibration for better SEBALI ET estimations: Validations and recommendations," Agricultural Water Management, Elsevier, vol. 230(C).
- Josse, Julie & Husson, François, 2012. "Selecting the number of components in principal component analysis using cross-validation approximations," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1869-1879.
- Qing Li & Long Hai Vo, 2021. "Intangible Capital and Innovation: An Empirical Analysis of Vietnamese Enterprises," Economics Discussion / Working Papers 21-02, The University of Western Australia, Department of Economics.
- Joost Ginkel & Pieter Kroonenberg, 2014. "Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 242-269, July.
- Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
- Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
- Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
- Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
- Shahadha, Saadi Sattar & Wendroth, Ole & Zhu, Junfeng & Walton, Jason, 2019. "Can measured soil hydraulic properties simulate field water dynamics and crop production?," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
- Escarabajal-Henarejos, D. & Molina-Martínez, J.M. & Fernández-Pacheco, D.G. & Cavas-Martínez, F. & García-Mateos, G., 2015. "Digital photography applied to irrigation management of Little Gem lettuce," Agricultural Water Management, Elsevier, vol. 151(C), pages 148-157.
- Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
- Hu, Xinyu & Zhao, Jinfeng & Sun, Shikun & Jia, Chengru & Zhang, Fuyao & Ma, Yizhe & Wang, Kaixuan & Wang, Yubao, 2023. "Evaluation of the temporal reconstruction methods for MODIS-based continuous daily actual evapotranspiration estimation," Agricultural Water Management, Elsevier, vol. 275(C).
- Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
- Elfarkh, Jamal & Simonneaux, Vincent & Jarlan, Lionel & Ezzahar, Jamal & Boulet, Gilles & Chakir, Adnane & Er-Raki, Salah, 2022. "Evapotranspiration estimates in a traditional irrigated area in semi-arid Mediterranean. Comparison of four remote sensing-based models," Agricultural Water Management, Elsevier, vol. 270(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0315574. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.