IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0310991.html
   My bibliography  Save this article

Functional regression clustering with multiple functional gene expressions

Author

Listed:
  • Susana Conde
  • Shahin Tavakoli
  • Daphne Ezer

Abstract

Gene expression data is often collected in time series experiments, under different experimental conditions. There may be genes that have very different gene expression profiles over time, but that adjust their gene expression patterns in the same way under experimental conditions. Our aim is to develop a method that finds clusters of genes in which the relationship between these temporal gene expression profiles are similar to one another, even if the individual temporal gene expression profiles differ. We propose a K-means-type algorithm in which each cluster is defined by a function-on-function regression model, which, inter alia, allows for multiple functional explanatory variables. We validate this novel approach through extensive simulations and then apply it to identify groups of genes whose diurnal expression pattern is perturbed by the season in a similar way. Our clusters are enriched for genes with similar biological functions, including one cluster enriched in both photosynthesis-related functions and polysomal ribosomes, which shows that our method provides useful and novel biological insights.

Suggested Citation

  • Susana Conde & Shahin Tavakoli & Daphne Ezer, 2024. "Functional regression clustering with multiple functional gene expressions," PLOS ONE, Public Library of Science, vol. 19(11), pages 1-23, November.
  • Handle: RePEc:plo:pone00:0310991
    DOI: 10.1371/journal.pone.0310991
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310991
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0310991&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0310991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeng‐Min Chiou & Pai‐Ling Li, 2007. "Functional clustering and identifying substructures of longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 679-699, September.
    2. Müller, Hans-Georg & Yao, Fang, 2008. "Functional Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1534-1544.
    3. Ci-Ren Jiang & John A. D. Aston & Jane-Ling Wang, 2016. "A Functional Approach to Deconvolve Dynamic Neuroimaging Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 1-13, March.
    4. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    5. Sonia Petrone & Michele Guindani & Alan E. Gelfand, 2009. "Hybrid Dirichlet mixture models for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 755-782, September.
    6. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    7. Aurore Delaigle & Peter Hall & Tung Pham, 2019. "Clustering functional data into groups by using projections," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 271-304, April.
    8. David Rügamer & Sarah Brockhaus & Kornelia Gentsch & Klaus Scherer & Sonja Greven, 2018. "Boosting factor‐specific functional historical models for the detection of synchronization in bioelectrical signals," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(3), pages 621-642, April.
    9. Serban, Nicoleta & Wasserman, Larry, 2005. "CATS: Clustering After Transformation and Smoothing," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 990-999, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    2. Xin Wang, 2024. "Clustering of longitudinal curves via a penalized method and EM algorithm," Computational Statistics, Springer, vol. 39(3), pages 1485-1512, May.
    3. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    4. Fabio Centofanti & Antonio Lepore & Biagio Palumbo, 2024. "Sparse and smooth functional data clustering," Statistical Papers, Springer, vol. 65(2), pages 795-825, April.
    5. Qingzhi Zhong & Huazhen Lin & Yi Li, 2021. "Cluster non‐Gaussian functional data," Biometrics, The International Biometric Society, vol. 77(3), pages 852-865, September.
    6. Zhu, Hanbing & Li, Rui & Zhang, Riquan & Lian, Heng, 2020. "Nonlinear functional canonical correlation analysis via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    7. Li, Ting & Song, Xinyuan & Zhang, Yingying & Zhu, Hongtu & Zhu, Zhongyi, 2021. "Clusterwise functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    8. Liu, Xueli & Yang, Mark C.K., 2009. "Simultaneous curve registration and clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1361-1376, February.
    9. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    10. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    11. Li, Pai-Ling & Chiou, Jeng-Min & Shyr, Yu, 2017. "Functional data classification using covariate-adjusted subspace projection," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 21-34.
    12. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    13. Wookyeong Song & Hee-Seok Oh & Ying Kuen Cheung & Yaeji Lim, 2024. "Multi-feature clustering of step data using multivariate functional principal component analysis," Statistical Papers, Springer, vol. 65(4), pages 2109-2134, June.
    14. Xiaomeng Ju & Matías Salibián-Barrera, 2024. "Tree-based boosting with functional data," Computational Statistics, Springer, vol. 39(3), pages 1587-1620, May.
    15. Yuexuan Wu & Chao Huang & Anuj Srivastava, 2024. "Shape-based functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 1-47, March.
    16. Tang, Qingguo & Tu, Wei & Kong, Linglong, 2023. "Estimation for partial functional partially linear additive model," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    17. Aurore Delaigle & Peter Hall & Tung Pham, 2019. "Clustering functional data into groups by using projections," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 271-304, April.
    18. Cody Carroll & Hans‐Georg Müller, 2023. "Latent deformation models for multivariate functional data and time‐warping separability," Biometrics, The International Biometric Society, vol. 79(4), pages 3345-3358, December.
    19. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    20. Christoph Hellmayr & Alan E. Gelfand, 2021. "A Partition Dirichlet Process Model for Functional Data Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 30-65, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0310991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.