IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0310355.html
   My bibliography  Save this article

Price prediction of polyester yarn based on multiple linear regression model

Author

Listed:
  • Wenyi Qiu
  • Qingjun Mao
  • Chen Liu

Abstract

China’s polyester textile industry is one of the notable contributors to national economy. This paper takes polyester yarn, core raw material in polyester textile industry chain, as research object, and deeply explores its price indicators and risk hedging mechanisms through multiple linear regression models and Holt-Winters approaches. It is worth mentioning that with continuous development of digital technology, digital transformation of production lines and warehouses has become an important development feature in various industries. This study also actively complies with this trend, and innovatively incorporates the upstream and downstream production line start-up rates into price prediction model. Through this initiative, we can more comprehensively consider the impact of supply and demand changes on price of polyester yarn, thus making prediction results more closely reflect the actual market situation. This quantitative analysis method undoubtedly provides new ideas for enterprises to better grasp market dynamics in digital era.

Suggested Citation

  • Wenyi Qiu & Qingjun Mao & Chen Liu, 2024. "Price prediction of polyester yarn based on multiple linear regression model," PLOS ONE, Public Library of Science, vol. 19(9), pages 1-16, September.
  • Handle: RePEc:plo:pone00:0310355
    DOI: 10.1371/journal.pone.0310355
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310355
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0310355&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0310355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2022. "Exploring the Trend of Commodity Prices: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mbarki, Imen & Khan, Muhammad Arif & Karim, Sitara & Paltrinieri, Andrea & Lucey, Brian M., 2023. "Unveiling commodities-financial markets intersections from a bibliometric perspective," Resources Policy, Elsevier, vol. 83(C).
    2. Zhang, Qi & Yang, Kun & Hu, Yi & Jiao, Jianbin & Wang, Shouyang, 2023. "Unveiling the impact of geopolitical conflict on oil prices: A case study of the Russia-Ukraine War and its channels," Energy Economics, Elsevier, vol. 126(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0310355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.