IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0309131.html
   My bibliography  Save this article

Investigation of breast cancer molecular subtype in a multi-ethnic population using MRI

Author

Listed:
  • Nazimah Ab Mumin
  • Marlina Tanty Ramli Hamid
  • Jeannie Hsiu Ding Wong
  • Seow-Fan Chiew
  • Kartini Rahmat
  • Kwan Hoong Ng

Abstract

Objectives: Accurate subtyping of breast cancer is crucial for its diagnosis, management, and prognostication. This study aimed to determine the association of magnetic resonance imaging (MRI) breast features with the molecular subtype and aggressiveness of breast cancer in a multi-ethnic population. Methods: Treatment-naive patients with invasive breast carcinoma were included in this retrospective study. Breast MRI features were recorded based on the American College of Radiology-Breast Imaging Reporting and Data System (ACR-BIRADS) criteria, with tumour size, and apparent diffusion coefficient value (ADC). The statistical association was tested with Pearson Chi-Square Test of Independence for categorical data or the Kruskal-Wallis/ Mann Whitney U test for numerical data between the MRI features and molecular subtype, receptor status, tumour grade, lymphovascular infiltration (LVI) and axillary lymph node (ALN). Multinomial logistic regression was used to test the predictive likelihood of the significant features. The breast cancer subtypes were determined via immunohistochemistry (IHC) and dual-color dual-hapten in-situ hybridization (D-DISH). The expression statuses of ER, PR, and HER-2, LVI, and ALN were obtained from the histopathology report. The ER / PR / HER-2 was evaluated according to the American Society of Clinical Oncology / College of American Pathologists. Results: The study included 194 patients; 41.8% (n = 81) Chinese, 40.7% (n = 79) Malay, and 17.5% (n = 34) Indian, involving 71.6%(n = 139) luminal-like, 12.9%(n = 25) HER-2 enriched, and 15.5%(n = 30) Triple-negative breast cancer (TNBC). TNBC was associated with rim enhancement (p = 0.002) and peritumoral oedema (p = 0.004). HER-2 enriched tumour was associated with larger tumour size (p = 0.041). Luminal-like cancer was associated with irregular shape (p = 0.005) with circumscribed margin (p = 0.003). Other associations were ER-negative tumour with circumscribed margin (p = 0.002) and PR-negative with round shape (p = 0.001). Tumour sizes were larger in ER-negative (p = 0.044) and PR-negative (p = 0.022). Rim enhancement was significantly associated with higher grade (p = 0.001), and moderate peritumoral oedema with positive axillary lymph node (p = 0.002). Conclusion: Certain MRI features can be applied to differentiate breast cancer molecular subtypes, receptor status and aggressiveness, even in a multi-ethnic population.

Suggested Citation

  • Nazimah Ab Mumin & Marlina Tanty Ramli Hamid & Jeannie Hsiu Ding Wong & Seow-Fan Chiew & Kartini Rahmat & Kwan Hoong Ng, 2024. "Investigation of breast cancer molecular subtype in a multi-ethnic population using MRI," PLOS ONE, Public Library of Science, vol. 19(8), pages 1-14, August.
  • Handle: RePEc:plo:pone00:0309131
    DOI: 10.1371/journal.pone.0309131
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309131
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0309131&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0309131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles M. Perou & Therese Sørlie & Michael B. Eisen & Matt van de Rijn & Stefanie S. Jeffrey & Christian A. Rees & Jonathan R. Pollack & Douglas T. Ross & Hilde Johnsen & Lars A. Akslen & Øystein Flu, 2000. "Molecular portraits of human breast tumours," Nature, Nature, vol. 406(6797), pages 747-752, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xi & Hoadley, Katherine A. & Hannig, Jan & Marron, J.S., 2023. "Jackstraw inference for AJIVE data integration," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    2. Manish G & Anil Kumar Badana & Rama Rao Malla, 2017. "Emerging Diagnostic and Prognostic Biomarkers of Triple Negative Breast Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(3), pages 561-565, August.
    3. Jacob Elnaggar & Fern Tsien & Lucio Miele & Chindo Hicks & Clayton Yates & Melisa Davis, 2019. "An Integrative Genomics Approach for Associating Genetic Susceptibility with the Tumor Immune Microenvironment in Triple Negative Breast Cancer," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 15(1), pages 1-12, February.
    4. Egashira, Kento & Yata, Kazuyoshi & Aoshima, Makoto, 2024. "Asymptotic properties of hierarchical clustering in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    5. María Elena Martínez & Jonathan T Unkart & Li Tao & Candyce H Kroenke & Richard Schwab & Ian Komenaka & Scarlett Lin Gomez, 2017. "Prognostic significance of marital status in breast cancer survival: A population-based study," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.
    6. Yishai Shimoni, 2018. "Association between expression of random gene sets and survival is evident in multiple cancer types and may be explained by sub-classification," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-15, February.
    7. repec:plo:pone00:0103514 is not listed on IDEAS
    8. Marcin Pilarczyk & Mehdi Fazel-Najafabadi & Michal Kouril & Behrouz Shamsaei & Juozas Vasiliauskas & Wen Niu & Naim Mahi & Lixia Zhang & Nicholas A. Clark & Yan Ren & Shana White & Rashid Karim & Huan, 2022. "Connecting omics signatures and revealing biological mechanisms with iLINCS," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. repec:plo:pone00:0018135 is not listed on IDEAS
    10. Junhee Seok & Ronald W Davis & Wenzhong Xiao, 2015. "A Hybrid Approach of Gene Sets and Single Genes for the Prediction of Survival Risks with Gene Expression Data," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    11. Qing Qu & Yan Mao & Xiao-chun Fei & Kun-wei Shen, 2013. "The Impact of Androgen Receptor Expression on Breast Cancer Survival: A Retrospective Study and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    12. repec:plo:pone00:0081843 is not listed on IDEAS
    13. Bourret, Pascale & Keating, Peter & Cambrosio, Alberto, 2011. "Regulating diagnosis in post-genomic medicine: Re-aligning clinical judgment?," Social Science & Medicine, Elsevier, vol. 73(6), pages 816-824, September.
    14. G. Gambardella & G. Viscido & B. Tumaini & A. Isacchi & R. Bosotti & D. di Bernardo, 2022. "A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. repec:plo:pone00:0184902 is not listed on IDEAS
    16. Yoo-Ah Kim & Stefan Wuchty & Teresa M Przytycka, 2011. "Identifying Causal Genes and Dysregulated Pathways in Complex Diseases," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
    17. repec:plo:pone00:0142047 is not listed on IDEAS
    18. Pauliina M. Munne & Lahja Martikainen & Iiris Räty & Kia Bertula & Nonappa & Janika Ruuska & Hanna Ala-Hongisto & Aino Peura & Babette Hollmann & Lilya Euro & Kerim Yavuz & Linda Patrikainen & Maria S, 2021. "Compressive stress-mediated p38 activation required for ERα + phenotype in breast cancer," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    19. Radhakrishnan Nagarajan & Marco Scutari, 2013. "Impact of Noise on Molecular Network Inference," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    20. R Joseph Bender & Feilim Mac Gabhann, 2013. "Expression of VEGF and Semaphorin Genes Define Subgroups of Triple Negative Breast Cancer," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-15, May.
    21. Marron, J.S., 2017. "Big Data in context and robustness against heterogeneity," Econometrics and Statistics, Elsevier, vol. 2(C), pages 73-80.
    22. Deepak Poduval & Zuzana Sichmanova & Anne Hege Straume & Per Eystein Lønning & Stian Knappskog, 2020. "The novel microRNAs hsa-miR-nov7 and hsa-miR-nov3 are over-expressed in locally advanced breast cancer," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-23, April.
    23. Seunghyun Wang & Doheon Lee, 2023. "Identifying prognostic subgroups of luminal-A breast cancer using deep autoencoders and gene expressions," PLOS Computational Biology, Public Library of Science, vol. 19(5), pages 1-18, May.
    24. Mariana Segovia-Mendoza & Margarita Isabel Palacios-Arreola & Luz María Monroy-Escamilla & Alexandra Estela Soto-Piña & Karen Elizabeth Nava-Castro & Yizel Becerril-Alarcón & Roberto Camacho-Beiza & D, 2022. "Association of Serum Levels of Plasticizers Compounds, Phthalates and Bisphenols, in Patients and Survivors of Breast Cancer: A Real Connection?," IJERPH, MDPI, vol. 19(13), pages 1-22, June.
    25. Chi-Cheng Huang & Shih-Hsin Tu & Heng-Hui Lien & Jaan-Yeh Jeng & Ching-Shui Huang & Chi-Jung Huang & Liang-Chuan Lai & Eric Y Chuang, 2013. "Concurrent Gene Signatures for Han Chinese Breast Cancers," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0309131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.