IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0305386.html
   My bibliography  Save this article

Sparse spectral graph analysis and its application to gastric cancer drug resistance-specific molecular interplays identification

Author

Listed:
  • Heewon Park
  • Satoru Miyano

Abstract

Uncovering acquired drug resistance mechanisms has garnered considerable attention as drug resistance leads to treatment failure and death in patients with cancer. Although several bioinformatics studies developed various computational methodologies to uncover the drug resistance mechanisms in cancer chemotherapy, most studies were based on individual or differential gene expression analysis. However the single gene-based analysis is not enough, because perturbations in complex molecular networks are involved in anti-cancer drug resistance mechanisms. The main goal of this study is to reveal crucial molecular interplay that plays key roles in mechanism underlying acquired gastric cancer drug resistance. To uncover the mechanism and molecular characteristics of drug resistance, we propose a novel computational strategy that identified the differentially regulated gene networks. Our method measures dissimilarity of networks based on the eigenvalues of the Laplacian matrix. Especially, our strategy determined the networks’ eigenstructure based on sparse eigen loadings, thus, the only crucial features to describe the graph structure are involved in the eigenanalysis without noise disturbance. We incorporated the network biology knowledge into eigenanalysis based on the network-constrained regularization. Therefore, we can achieve a biologically reliable interpretation of the differentially regulated gene network identification. Monte Carlo simulations show the outstanding performances of the proposed methodology for differentially regulated gene network identification. We applied our strategy to gastric cancer drug-resistant-specific molecular interplays and related markers. The identified drug resistance markers are verified through the literature. Our results suggest that the suppression and/or induction of COL4A1, PXDN and TGFBI and their molecular interplays enriched in the Extracellular-related pathways may provide crucial clues to enhance the chemosensitivity of gastric cancer. The developed strategy will be a useful tool to identify phenotype-specific molecular characteristics that can provide essential clues to uncover the complex cancer mechanism.

Suggested Citation

  • Heewon Park & Satoru Miyano, 2024. "Sparse spectral graph analysis and its application to gastric cancer drug resistance-specific molecular interplays identification," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-22, July.
  • Handle: RePEc:plo:pone00:0305386
    DOI: 10.1371/journal.pone.0305386
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305386
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305386&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0305386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shen, Haipeng & Huang, Jianhua Z., 2008. "Sparse principal component analysis via regularized low rank matrix approximation," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1015-1034, July.
    2. Peter Wills & François G Meyer, 2020. "Metrics for graph comparison: A practitioner’s guide," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-54, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kohei Adachi & Nickolay T. Trendafilov, 2016. "Sparse principal component analysis subject to prespecified cardinality of loadings," Computational Statistics, Springer, vol. 31(4), pages 1403-1427, December.
    2. Yixuan Qiu & Jing Lei & Kathryn Roeder, 2023. "Gradient-based sparse principal component analysis with extensions to online learning," Biometrika, Biometrika Trust, vol. 110(2), pages 339-360.
    3. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    4. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," Working Papers halshs-03626503, HAL.
    5. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
    6. Jin-Xing Liu & Yong Xu & Chun-Hou Zheng & Yi Wang & Jing-Yu Yang, 2012. "Characteristic Gene Selection via Weighting Principal Components by Singular Values," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    7. Johannes Tang Kristensen, 2013. "Diffusion Indexes with Sparse Loadings," CREATES Research Papers 2013-22, Department of Economics and Business Economics, Aarhus University.
    8. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    9. Merola, Giovanni Maria & Chen, Gemai, 2019. "Projection sparse principal component analysis: An efficient least squares method," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 366-382.
    10. Maurizio Vichi, 2017. "Disjoint factor analysis with cross-loadings," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 563-591, September.
    11. Shaobo Jin & Irini Moustaki & Fan Yang-Wallentin, 2018. "Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 628-649, September.
    12. Lei Wang & Xin Liu & Yin Zhang, 2023. "A communication-efficient and privacy-aware distributed algorithm for sparse PCA," Computational Optimization and Applications, Springer, vol. 85(3), pages 1033-1072, July.
    13. Mihee Lee & Haipeng Shen & Jianhua Z. Huang & J. S. Marron, 2010. "Biclustering via Sparse Singular Value Decomposition," Biometrics, The International Biometric Society, vol. 66(4), pages 1087-1095, December.
    14. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    15. Nolan, Tui H. & Richardson, Sylvia & Ruffieux, Hélène, 2025. "Efficient Bayesian functional principal component analysis of irregularly-observed multivariate curves," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
    16. Xin Qi & Ruiyan Luo, 2015. "Sparse Principal Component Analysis in Hilbert Space," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 270-289, March.
    17. Carrizosa, Emilio & Guerrero, Vanesa, 2014. "Biobjective sparse principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 151-159.
    18. Phuong T. Vu & Timothy V. Larson & Adam A. Szpiro, 2020. "Probabilistic predictive principal component analysis for spatially misaligned and high‐dimensional air pollution data with missing observations," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    19. Hyun Hak Kim, 2013. "Forecasting Macroeconomic Variables Using Data Dimension Reduction Methods: The Case of Korea," Working Papers 2013-26, Economic Research Institute, Bank of Korea.
    20. Amir Beck & Yakov Vaisbourd, 2016. "The Sparse Principal Component Analysis Problem: Optimality Conditions and Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 119-143, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0305386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.