IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0302004.html
   My bibliography  Save this article

Perinatal mortality in German dairy cattle: Unveiling the importance of cow-level risk factors and their interactions using a multifaceted modelling approach

Author

Listed:
  • Yury Zablotski
  • Katja Voigt
  • Martina Hoedemaker
  • Kerstin E Müller
  • Laura Kellermann
  • Heidi Arndt
  • Maria Volkmann
  • Linda Dachrodt
  • Annegret Stock

Abstract

Perinatal mortality (PM) is a common issue on dairy farms, leading to calf losses and increased farming costs. The current knowledge about PM in dairy cattle is, however, limited and previous studies lack comparability. The topic has also primarily been studied in Holstein-Friesian cows and closely related breeds, while other dairy breeds have been largely ignored. Different data collection techniques, definitions of PM, studied variables and statistical approaches further limit the comparability and interpretation of previous studies. This article aims to investigate the factors contributing to PM in two underexplored breeds, Simmental (SIM) and Brown Swiss (BS), while comparing them to German Holstein on German farms, and to employ various modelling techniques to enhance comparability to other studies, and to determine if different statistical methods yield consistent results. A total of 133,942 calving records from 131,657 cows on 721 German farms were analyzed. Amongst these, the proportion of PM (defined as stillbirth or death up to 48 hours of age) was 6.1%. Univariable and multivariable mixed-effects logistic regressions, random forest and multimodel inference via brute-force model selection approaches were used to evaluate risk factors on the individual animal level. Although the balanced random forest did not incorporate the random effect, it yielded results similar to those of the mixed-effect model. The brute-force approach surpassed the widely adopted backwards variable selection method and represented a combination of strengths: it accounted for the random effect similar to mixed-effects regression and generated a variable importance plot similar to random forest. The difficulty of calving, breed and parity of the cow were found to be the most important factors, followed by farm size and season. Additionally, four significant interactions amongst predictors were identified: breed—calving ease, breed—season, parity—season and calving ease—farm size. The combination of factors, such as secondiparous SIM breed on small farms and experiencing easy calving in summer, showed the lowest probability of PM. Conversely, primiparous GH cows on large farms with difficult calving in winter exhibited the highest probability of PM. In order to reduce PM, appropriate management of dystocia, optimal heifer management and a wider use of SIM in dairy production are possible ways forward. It is also important that future studies are conducted to identify farm-specific contributors to higher PM on large farms.

Suggested Citation

  • Yury Zablotski & Katja Voigt & Martina Hoedemaker & Kerstin E Müller & Laura Kellermann & Heidi Arndt & Maria Volkmann & Linda Dachrodt & Annegret Stock, 2024. "Perinatal mortality in German dairy cattle: Unveiling the importance of cow-level risk factors and their interactions using a multifaceted modelling approach," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-24, April.
  • Handle: RePEc:plo:pone00:0302004
    DOI: 10.1371/journal.pone.0302004
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302004
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0302004&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0302004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wright, Marvin N. & Ziegler, Andreas, 2017. "ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i01).
    2. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin-Lin Gu & Hong-Shan Wu & Tian-Yi Liu & Yong-Jie Zhang & Jing-Cheng He & Xiao-Lei Liu & Zhi-Yong Wang & Guo-Bo Chen & Dan Jiang & Ming Fang, 2025. "Rapid and accurate multi-phenotype imputation for millions of individuals," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    2. Jana Emmenegger & Ralf Münnich & Jannik Schaller, 2022. "Evaluating Data Fusion Methods to Improve Income Modelling," Research Papers in Economics 2022-03, University of Trier, Department of Economics.
    3. Stephanie Houle & Ryan Macdonald, 2023. "Identifying Nascent High-Growth Firms Using Machine Learning," Staff Working Papers 23-53, Bank of Canada.
    4. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    5. Backer, David & Billing, Trey, 2024. "Forecasting the prevalence of child acute malnutrition using environmental and conflict conditions as leading indicators," World Development, Elsevier, vol. 176(C).
    6. Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
    7. Luis A Barboza & Shu-Wei Chou-Chen & Paola Vásquez & Yury E García & Juan G Calvo & Hugo G Hidalgo & Fabio Sanchez, 2023. "Assessing dengue fever risk in Costa Rica by using climate variables and machine learning techniques," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 17(1), pages 1-13, January.
    8. Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
    9. Lin Lin & Rachel L Spreng & Kelly E Seaton & S Moses Dennison & Lindsay C Dahora & Daniel J Schuster & Sheetal Sawant & Peter B Gilbert & Youyi Fong & Neville Kisalu & Andrew J Pollard & Georgia D Tom, 2024. "GeM-LR: Discovering predictive biomarkers for small datasets in vaccine studies," PLOS Computational Biology, Public Library of Science, vol. 20(11), pages 1-23, November.
    10. Mariana Oliveira & Luís Torgo & Vítor Santos Costa, 2021. "Evaluation Procedures for Forecasting with Spatiotemporal Data," Mathematics, MDPI, vol. 9(6), pages 1-27, March.
    11. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    12. Liangyuan Hu & Lihua Li, 2022. "Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
    13. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    14. Feldkircher, Martin, 2014. "The determinants of vulnerability to the global financial crisis 2008 to 2009: Credit growth and other sources of risk," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 19-49.
    15. repec:plo:pone00:0154450 is not listed on IDEAS
    16. Eunsil Seok & Akhgar Ghassabian & Yuyan Wang & Mengling Liu, 2024. "Statistical Methods for Modeling Exposure Variables Subject to Limit of Detection," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 435-458, July.
    17. Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.
    18. Georges Steffgen & Philipp E. Sischka & Martha Fernandez de Henestrosa, 2020. "The Quality of Work Index and the Quality of Employment Index: A Multidimensional Approach of Job Quality and Its Links to Well-Being at Work," IJERPH, MDPI, vol. 17(21), pages 1-31, October.
    19. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    20. Esef Hakan Toytok & Sungur Gürel, 2019. "Does Project Children’s University Increase Academic Self-Efficacy in 6th Graders? A Weak Experimental Design," Sustainability, MDPI, vol. 11(3), pages 1-12, February.
    21. J M van Niekerk & M C Vos & A Stein & L M A Braakman-Jansen & A F Voor in ‘t holt & J E W C van Gemert-Pijnen, 2020. "Risk factors for surgical site infections using a data-driven approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0302004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.