IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0300766.html
   My bibliography  Save this article

Optimal tactics in community pension model for defined benefit pension plans

Author

Listed:
  • Jun Wang
  • Chunli Cui
  • Tian Tian

Abstract

Against the backdrop of an aging population, community pension initiatives are gaining traction, permeating societal landscapes. This study delves into the equilibrium strategy within the context of a defined benefit pension plan, employing a differential game framework with a community pension model. Hence, the model entails the company’s controls over investment rates in funds, juxtaposed with employees’ inclination towards a greater proportion of community pension allocation in said funds. To tackle this issue, a stochastic differential game model for pensions under a community pension scheme is formulated. Leveraging the Hamilton-Jacobi-Bellman equation, we derive the Markov Perfect Nash Equilibrium solution and optimal portfolio. Through numerical simulations, we analyze the impact of varying risk aversion levels across different parameter values on equilibrium ratios, thereby offering insights into managerial risk tolerance.

Suggested Citation

  • Jun Wang & Chunli Cui & Tian Tian, 2025. "Optimal tactics in community pension model for defined benefit pension plans," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-17, January.
  • Handle: RePEc:plo:pone00:0300766
    DOI: 10.1371/journal.pone.0300766
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300766
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0300766&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0300766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hainaut, Donatien & Deelstra, Griselda, 2011. "Optimal funding of defined benefit pension plans," Journal of Pension Economics and Finance, Cambridge University Press, vol. 10(1), pages 31-52, January.
    2. Chang, Shih-Chieh, 1999. "Optimal pension funding through dynamic simulations: the case of Taiwan public employees retirement system," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 187-199, May.
    3. Pun, Chi Seng & Wong, Hoi Ying, 2016. "Robust non-zero-sum stochastic differential reinsurance game," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 169-177.
    4. Cairns, Andrew, 2000. "Some Notes on the Dynamics and Optimal Control of Stochastic Pension Fund Models in Continuous Time," ASTIN Bulletin, Cambridge University Press, vol. 30(1), pages 19-55, May.
    5. Delong, Lukasz & Gerrard, Russell & Haberman, Steven, 2008. "Mean-variance optimization problems for an accumulation phase in a defined benefit plan," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 107-118, February.
    6. Guan, Guohui & Hu, Jiaqi & Liang, Zongxia, 2022. "Robust equilibrium strategies in a defined benefit pension plan game," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 193-217.
    7. Haberman, Steven & Sung, Joo-Ho, 1994. "Dynamic approaches to pension funding," Insurance: Mathematics and Economics, Elsevier, vol. 15(2-3), pages 151-162, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2019. "Equilibrium strategies in a defined benefit pension plan game," European Journal of Operational Research, Elsevier, vol. 275(1), pages 374-386.
    2. Josa-Fombellida, Ricardo & López-Casado, Paula & Rincón-Zapatero, Juan Pablo, 2018. "Portfolio optimization in a defined benefit pension plan where the risky assets are processes with constant elasticity of variance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 73-86.
    3. Josa-Fombellida, Ricardo & López-Casado, Paula, 2023. "A defined benefit pension plan game with Brownian and Poisson jumps uncertainty," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1294-1311.
    4. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2012. "Stochastic pension funding when the benefit and the risky asset follow jump diffusion processes," European Journal of Operational Research, Elsevier, vol. 220(2), pages 404-413.
    5. Guan, Guohui & Hu, Jiaqi & Liang, Zongxia, 2022. "Robust equilibrium strategies in a defined benefit pension plan game," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 193-217.
    6. Hainaut, Donatien, 2014. "Impulse control of pension fund contributions, in a regime switching economy," European Journal of Operational Research, Elsevier, vol. 239(3), pages 810-819.
    7. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2008. "Mean-variance portfolio and contribution selection in stochastic pension funding," European Journal of Operational Research, Elsevier, vol. 187(1), pages 120-137, May.
    8. Guohui Guan & Jiaqi Hu & Zongxia Liang, 2021. "Robust equilibrium strategies in a defined benefit pension plan game," Papers 2103.09121, arXiv.org.
    9. Wang, Ning & Zhang, Yumo, 2024. "Robust asset-liability management games for n players under multivariate stochastic covariance models," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 67-98.
    10. Taylor, Greg, 2002. "Stochastic control of funding systems," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 323-350, June.
    11. Josa-Fombellida, Ricardo & Navas, Jorge, 2020. "Time consistent pension funding in a defined benefit pension plan with non-constant discounting," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 142-153.
    12. Delong, Lukasz & Gerrard, Russell & Haberman, Steven, 2008. "Mean-variance optimization problems for an accumulation phase in a defined benefit plan," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 107-118, February.
    13. Michail Anthropelos & Evmorfia Blontzou, 2023. "On Valuation and Investments of Pension Plans in Discrete Incomplete Markets," Risks, MDPI, vol. 11(6), pages 1-24, June.
    14. Chang, Shih-Chieh & Chen, Chiang-Chu, 2002. "Allocating unfunded liability in pension valuation under uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 371-387, June.
    15. Chang, S. C. & Tzeng, Larry Y. & Miao, Jerry C. Y., 2003. "Pension funding incorporating downside risks," Insurance: Mathematics and Economics, Elsevier, vol. 32(2), pages 217-228, April.
    16. Devolder, Pierre & Bosch Princep, Manuela & Dominguez Fabian, Inmaculada, 2003. "Stochastic optimal control of annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 227-238, October.
    17. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2001. "Minimization of risks in pension funding by means of contributions and portfolio selection," Insurance: Mathematics and Economics, Elsevier, vol. 29(1), pages 35-45, August.
    18. Miao Jerry C.Y. & Wang Jennifer L., 2006. "Intertemporal Stable Pension Funding," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 1(2), pages 1-15, February.
    19. repec:rnp:ppaper:r90227 is not listed on IDEAS
    20. Yao, Haixiang & Lai, Yongzeng & Ma, Qinghua & Jian, Minjie, 2014. "Asset allocation for a DC pension fund with stochastic income and mortality risk: A multi-period mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 84-92.
    21. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2004. "Optimal risk management in defined benefit stochastic pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 489-503, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0300766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.