IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0300201.html
   My bibliography  Save this article

Machine learning-based models to predict the conversion of normal blood pressure to hypertension within 5-year follow-up

Author

Listed:
  • Aref Andishgar
  • Sina Bazmi
  • Reza Tabrizi
  • Maziyar Rismani
  • Omid Keshavarzian
  • Babak Pezeshki
  • Fariba Ahmadizar

Abstract

Background: Factors contributing to the development of hypertension exhibit significant variations across countries and regions. Our objective was to predict individuals at risk of developing hypertension within a 5-year period in a rural Middle Eastern area. Methods: This longitudinal study utilized data from the Fasa Adults Cohort Study (FACS). The study initially included 10,118 participants aged 35–70 years in rural districts of Fasa, Iran, with a follow-up of 3,000 participants after 5 years using random sampling. A total of 160 variables were included in the machine learning (ML) models, and feature scaling and one-hot encoding were employed for data processing. Ten supervised ML algorithms were utilized, namely logistic regression (LR), support vector machine (SVM), random forest (RF), Gaussian naive Bayes (GNB), linear discriminant analysis (LDA), k-nearest neighbors (KNN), gradient boosting machine (GBM), extreme gradient boosting (XGB), cat boost (CAT), and light gradient boosting machine (LGBM). Hyperparameter tuning was performed using various combinations of hyperparameters to identify the optimal model. Synthetic Minority Over-sampling Technology (SMOTE) was used to balance the training data, and feature selection was conducted using SHapley Additive exPlanations (SHAP). Results: Out of 2,288 participants who met the criteria, 251 individuals (10.9%) were diagnosed with new hypertension. The LGBM model (determined to be the optimal model) with the top 30 features achieved an AUC of 0.67, an f1-score of 0.23, and an AUC-PR of 0.26. The top three predictors of hypertension were baseline systolic blood pressure (SBP), gender, and waist-to-hip ratio (WHR), with AUCs of 0.66, 0.58, and 0.63, respectively. Hematuria in urine tests and family history of hypertension ranked fourth and fifth. Conclusion: ML models have the potential to be valuable decision-making tools in evaluating the need for early lifestyle modification or medical intervention in individuals at risk of developing hypertension.

Suggested Citation

  • Aref Andishgar & Sina Bazmi & Reza Tabrizi & Maziyar Rismani & Omid Keshavarzian & Babak Pezeshki & Fariba Ahmadizar, 2024. "Machine learning-based models to predict the conversion of normal blood pressure to hypertension within 5-year follow-up," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-17, March.
  • Handle: RePEc:plo:pone00:0300201
    DOI: 10.1371/journal.pone.0300201
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300201
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0300201&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0300201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Schratz, Patrick & Muenchow, Jannes & Iturritxa, Eugenia & Richter, Jakob & Brenning, Alexander, 2019. "Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data," Ecological Modelling, Elsevier, vol. 406(C), pages 109-120.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    2. Tania L. Maxwell & Mark D. Spalding & Daniel A. Friess & Nicholas J. Murray & Kerrylee Rogers & Andre S. Rovai & Lindsey S. Smart & Lukas Weilguny & Maria Fernanda Adame & Janine B. Adams & William E., 2024. "Soil carbon in the world’s tidal marshes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Katarzyna Kopczewska, 2023. "Spatial bootstrapped microeconometrics: Forecasting for out‐of‐sample geo‐locations in big data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 1391-1419, September.
    4. Katarzyna Kopczewska, 2022. "Spatial machine learning: new opportunities for regional science," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(3), pages 713-755, June.
    5. Morakot Worachairungreung & Sarawut Ninsawat & Apichon Witayangkurn & Matthew N. Dailey, 2021. "Identification of Road Traffic Injury Risk Prone Area Using Environmental Factors by Machine Learning Classification in Nonthaburi, Thailand," Sustainability, MDPI, vol. 13(7), pages 1-25, April.
    6. Zhu Liang & Wei Liu & Weiping Peng & Lingwei Chen & Changming Wang, 2022. "Improved Shallow Landslide Susceptibility Prediction Based on Statistics and Ensemble Learning," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    7. Meyer, Hanna & Reudenbach, Christoph & Wöllauer, Stephan & Nauss, Thomas, 2019. "Importance of spatial predictor variable selection in machine learning applications – Moving from data reproduction to spatial prediction," Ecological Modelling, Elsevier, vol. 411(C).
    8. Diana Koldasbayeva & Polina Tregubova & Mikhail Gasanov & Alexey Zaytsev & Anna Petrovskaia & Evgeny Burnaev, 2024. "Challenges in data-driven geospatial modeling for environmental research and practice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Anurag Barthwal & Mamta Bhatt & Shwetank Avikal & Chandra Prakash, 2025. "Machine learning-based prediction models for electoral outcomes in India: a comparative analysis of exit polls from 2014–2021," Quality & Quantity: International Journal of Methodology, Springer, vol. 59(1), pages 313-338, February.
    10. Vo Thanh, Hung & Zamanyad, Aiyoub & Safaei-Farouji, Majid & Ashraf, Umar & Hemeng, Zhang, 2022. "Application of hybrid artificial intelligent models to predict deliverability of underground natural gas storage sites," Renewable Energy, Elsevier, vol. 200(C), pages 169-184.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0300201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.