IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0298765.html
   My bibliography  Save this article

Shear strength and particle breakage of construction and demolition waste as a function of moisture state and compaction level: Insights for sustainable highway engineering

Author

Listed:
  • Ahmed M Yosri
  • Abdelhalim Azam
  • Fayez Alanazi
  • Abdulaziz H Alshehri
  • Mohamed Ahmed Okail

Abstract

In this study, the variation of shear strength behavior and particle breakage (after shearing), as a function of moisture state and compaction level, is investigated for recycled concrete aggregate blended with recycled clay masonry. Recycled masonry was blended with concrete aggregate in percentages ranging from 0% to 30% by total weight. Tests include; basic engineering characteristics (particle size, modified compaction, hydraulic conductivity, and California Bearing Ratio, CBR) as well as unconsolidated undrained static triaxial testing. In triaxial tests, moisture levels ranged from 60% to 100% of optimum moisture content, but compaction levels ranged from 90% to 98% of maximum dry density. The hydraulic conductivity for blends is approximately 2x10-6 cm/s, which indicates a relatively low hydraulic conductivity. Results show a proportional linear relationship between the shear strength of blends and the level of compaction. Despite this, both apparent cohesion and shear strength exhibited reverse linear trends. As expected, more compaction effort resulted in more particle breakage. Strict control should be performed over the compaction process to achieve the required compaction level which resulting in pavement materials being stiffer.

Suggested Citation

  • Ahmed M Yosri & Abdelhalim Azam & Fayez Alanazi & Abdulaziz H Alshehri & Mohamed Ahmed Okail, 2024. "Shear strength and particle breakage of construction and demolition waste as a function of moisture state and compaction level: Insights for sustainable highway engineering," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-19, March.
  • Handle: RePEc:plo:pone00:0298765
    DOI: 10.1371/journal.pone.0298765
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298765
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0298765&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0298765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hossain, Md. Uzzal & Poon, Chi Sun & Lo, Irene M.C. & Cheng, Jack C.P., 2016. "Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 67-77.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna M. Grabiec & Jeonghyun Kim & Andrzej Ubysz & Pilar Bilbao, 2021. "Some Remarks towards a Better Understanding of the Use of Concrete Recycled Aggregate: A Review," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    2. Anna Furberg & Rickard Arvidsson & Sverker Molander, 2022. "A practice‐based framework for defining functional units in comparative life cycle assessments of materials," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 718-730, June.
    3. Seong-Jun Yang & Ji-Young Eom & Myung-Jin Lee & Dae-Hwan Hwang & Won-Bin Park & Young-Min Wie & Ki-Gang Lee & Kang-Hoon Lee, 2023. "Comparative Environmental Evaluation of Sewage Sludge Treatment and Aggregate Production Process by Life Cycle Assessment," Sustainability, MDPI, vol. 16(1), pages 1-17, December.
    4. Dong Yang & Mengyuan Dang & Lingwen Sun & Feng Han & Feng Shi & Hongbo Zhang & Hongjun Zhang, 2021. "A System Dynamics Model for Urban Residential Building Stock towards Sustainability: The Case of Jinan, China," IJERPH, MDPI, vol. 18(18), pages 1-23, September.
    5. Wang, Jianliang & Liu, Mingming & McLellan, Benjamin C. & Tang, Xu & Feng, Lianyong, 2017. "Environmental impacts of shale gas development in China: A hybrid life cycle analysis," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 38-45.
    6. Dan Su & Yu Mei & Tongchao Liu & Khalil Amine, 2025. "Global Regulations for Sustainable Battery Recycling: Challenges and Opportunities," Sustainability, MDPI, vol. 17(7), pages 1-30, March.
    7. Maja Kępniak & Paweł Łukowski, 2024. "Multicriteria Analysis of Cement Mortar with Recycled Sand," Sustainability, MDPI, vol. 16(5), pages 1-13, February.
    8. Bryce, James & Brodie, Stefanie & Parry, Tony & Lo Presti, Davide, 2017. "A systematic assessment of road pavement sustainability through a review of rating tools," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 108-118.
    9. Yulin Wang & Xianzhong Mu & Guangwen Hu & Liyuchen Wang & Xueting Zhu, 2025. "Life Cycle Assessment-Based Analysis of Environmental and Economic Benefits in Construction Solid Waste Recycling," Sustainability, MDPI, vol. 17(9), pages 1-32, April.
    10. Ehsan Momeni & Fereydoon Omidinasab & Ahmad Dalvand & Vahid Goodarzimehr & Abas Eskandari, 2022. "Flexural Strength of Concrete Beams Made of Recycled Aggregates: An Experimental and Soft Computing-Based Study," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    11. Magnusson, Simon & Mácsik, Josef, 2017. "Analysis of energy use and emissions of greenhouse gases, metals and organic substances from construction materials used for artificial turf," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 362-372.
    12. Jianguo Chen & Yangyue Su & Hongyun Si & Jindao Chen, 2018. "Managerial Areas of Construction and Demolition Waste: A Scientometric Review," IJERPH, MDPI, vol. 15(11), pages 1-20, October.
    13. Hossain, Md. Uzzal & Poon, Chi Sun & Lo, Irene M.C. & Cheng, Jack C.P., 2017. "Comparative LCA on using waste materials in the cement industry: A Hong Kong case study," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 199-208.
    14. Toniolo, Sara & Mazzi, Anna & Pieretto, Chiara & Scipioni, Antonio, 2017. "Allocation strategies in comparative life cycle assessment for recycling: Considerations from case studies," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 249-261.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0298765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.