IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0296314.html
   My bibliography  Save this article

A high-precision jujube disease spot detection based on SSD during the sorting process

Author

Listed:
  • Zhi-Ben Yin
  • Fu-Yong Liu
  • Hui Geng
  • Ya-Jun Xi
  • De-Bin Zeng
  • Chun-Jing Si
  • Ming-Deng Shi

Abstract

The development of automated grading equipment requires achieving high throughput and precise detection of disease spots on jujubes. However, the current algorithms are inadequate in accomplishing these objectives due to their high density, varying sizes and shapes, and limited location information regarding disease spots on jujubes. This paper proposes a method called JujubeSSD, to boost the precision of identifying disease spots in jujubes based on a single shot multi-box detector (SSD) network. In this study, a diverse dataset comprising disease spots of varied sizes and shapes, varying densities, and multiple location details on jujubes was created through artificial collection and data augmentation. The parameter information obtained from transfer learning into the backbone feature extraction network of the SSD model, which reduced the time of spot detection to 0.14 s. To enhance the learning of target detail features and improve the recognition of weak information, the traditional convolution layer was replaced with deformable convolutional networks (DCNs). Furthermore, to address the challenge of varying sizes and shapes of disease spot regions on jujubes, the path aggregation feature pyramid network (PAFPN) and balanced feature pyramid (BFP) were integrated into the SSD network. Experimental results demonstrate that the mean average precision at the IoU (intersection over union) threshold of 0.5 (mAP@0.5) of JujubeSSD reached 97.1%, representing an improvement of approximately 6.35% compared to the original algorithm. When compared to existing algorithms, such as YOLOv5 and Faster R-CNN, the improvements in mAP@0.5 were 16.84% and 8.61%, respectively. Therefore, the proposed method for detecting jujube disease spot achieves superior performance in jujube surface disease detection and meets the requirements for practical application in agricultural production.

Suggested Citation

  • Zhi-Ben Yin & Fu-Yong Liu & Hui Geng & Ya-Jun Xi & De-Bin Zeng & Chun-Jing Si & Ming-Deng Shi, 2024. "A high-precision jujube disease spot detection based on SSD during the sorting process," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-28, January.
  • Handle: RePEc:plo:pone00:0296314
    DOI: 10.1371/journal.pone.0296314
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296314
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0296314&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0296314?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinzhu Lu & Lijuan Tan & Huanyu Jiang, 2021. "Review on Convolutional Neural Network (CNN) Applied to Plant Leaf Disease Classification," Agriculture, MDPI, vol. 11(8), pages 1-18, July.
    2. Yutan Wang & Zhenwei Xing & Liefei Ma & Aili Qu & Junrui Xue, 2022. "Object Detection Algorithm for Lingwu Long Jujubes Based on the Improved SSD," Agriculture, MDPI, vol. 12(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia Hao & Man Zhang & Tianru Zhou & Xuchao Guo & Federico Tomasetto & Yuxin Tong & Minjuan Wang, 2021. "An Automatic Light Stress Grading Architecture Based on Feature Optimization and Convolutional Neural Network," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
    2. Mingfeng Huang & Guoqin Xu & Junyu Li & Jianping Huang, 2021. "A Method for Segmenting Disease Lesions of Maize Leaves in Real Time Using Attention YOLACT++," Agriculture, MDPI, vol. 11(12), pages 1-14, December.
    3. Fahman Saeed & Muhammad Hussain & Hatim A. Aboalsamh, 2022. "Automatic Fingerprint Classification Using Deep Learning Technology (DeepFKTNet)," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    4. Hieu T. T. L. Pham & Mahdi Rafieizonooz & SangUk Han & Dong-Eun Lee, 2021. "Current Status and Future Directions of Deep Learning Applications for Safety Management in Construction," Sustainability, MDPI, vol. 13(24), pages 1-37, December.
    5. Sen Lin & Yucheng Xiu & Jianlei Kong & Chengcai Yang & Chunjiang Zhao, 2023. "An Effective Pyramid Neural Network Based on Graph-Related Attentions Structure for Fine-Grained Disease and Pest Identification in Intelligent Agriculture," Agriculture, MDPI, vol. 13(3), pages 1-20, February.
    6. Jinzhu Lu & Kaiqian Peng & Qi Wang & Cong Sun, 2023. "Lettuce Plant Trace-Element-Deficiency Symptom Identification via Machine Vision Methods," Agriculture, MDPI, vol. 13(8), pages 1-27, August.
    7. Mosleh Hmoud Al-Adhaileh & Amit Verma & Theyazn H. H. Aldhyani & Deepika Koundal, 2023. "Potato Blight Detection Using Fine-Tuned CNN Architecture," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    8. Xiang Zhang & Huiyi Gao & Li Wan, 2022. "Classification of Fine-Grained Crop Disease by Dilated Convolution and Improved Channel Attention Module," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    9. Li Zhang & Qun Hao & Jie Cao, 2023. "Attention-Based Fine-Grained Lightweight Architecture for Fuji Apple Maturity Classification in an Open-World Orchard Environment," Agriculture, MDPI, vol. 13(2), pages 1-20, January.
    10. Bulent Tugrul & Elhoucine Elfatimi & Recep Eryigit, 2022. "Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review," Agriculture, MDPI, vol. 12(8), pages 1-21, August.
    11. Hamed Alghamdi & Turki Turki, 2023. "PDD-Net: Plant Disease Diagnoses Using Multilevel and Multiscale Convolutional Neural Network Features," Agriculture, MDPI, vol. 13(5), pages 1-19, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0296314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.