IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0295392.html
   My bibliography  Save this article

Optimizing the implementation of a forest fuel break network

Author

Listed:
  • Alan A Ager
  • Michelle A Day
  • Bruno A Aparício
  • Rachel Houtman
  • Andrew Stinchfield

Abstract

Methods and models to design, prioritize and evaluate fuel break networks have potential application in many fire-prone ecosystems where major increases in fuel management investments are planned in response to growing incidence of wildfires. A key question facing managers is how to scale treatments into manageable project areas that meet operational and administrative constraints, and then prioritize their implementation over time to maximize fire management outcomes. We developed and tested a spatial modeling system to optimize the implementation of a proposed 3,538 km fuel break network and explore tradeoffs between two implementation strategies on a 0.5 million ha national forest in the western US. We segmented the network into 2,766 treatment units and used a spatial optimization model to compare linear versus radial project implementation geometries. We hypothesized that linear projects were more efficient at intercepting individual fire events over larger spatial domains, whereas radial projects conferred a higher level of network redundancy in terms of the length of the fuel break exposed to fires. We simulated implementation of the alternative project geometries and then examined fuel break-wildfire spatial interactions using a library of simulated fires developed in prior work. The results supported the hypothesis, with linear projects exhibiting substantially greater efficiency in terms of intercepting fires over larger areas, whereas radial projects had a higher interception length given a fire encountered a project. Adding economic objectives made it more difficult to obtain alternative project geometries, but substantially increased net revenue from harvested trees. We discuss how the model and results can be used to further understand decision tradeoffs and optimize the implementation of planned fuel break networks in conjunction with landscape conservation, protection, and restoration management in fire prone regions.

Suggested Citation

  • Alan A Ager & Michelle A Day & Bruno A Aparício & Rachel Houtman & Andrew Stinchfield, 2023. "Optimizing the implementation of a forest fuel break network," PLOS ONE, Public Library of Science, vol. 18(12), pages 1-23, December.
  • Handle: RePEc:plo:pone00:0295392
    DOI: 10.1371/journal.pone.0295392
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0295392
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0295392&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0295392?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ager, Alan A. & Vogler, Kevin C. & Day, Michelle A. & Bailey, John D., 2017. "Economic Opportunities and Trade-Offs in Collaborative Forest Landscape Restoration," Ecological Economics, Elsevier, vol. 136(C), pages 226-239.
    2. Belavenutti, Pedro & Ager, Alan A. & Day, Michelle A. & Chung, Woodam, 2022. "Designing forest restoration projects to optimize the application of broadcast burning," Ecological Economics, Elsevier, vol. 201(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Belgodere & Frédéric Allaire & Jean-Baptiste Filippi & Vivien Mallet & Florian Guéniot, 2023. "On the Marginal Cost of the Duration of a Wildfire," Journal of Forest Economics, now publishers, vol. 38(3), pages 265-292, August.
    2. Hjerpe, Evan E. & Colavito, Melanie M. & Waltz, Amy E.M. & Meador, Andrew Sánchez, 2024. "Return on investments in restoration and fuel treatments in frequent-fire forests of the American west: A meta-analysis," Ecological Economics, Elsevier, vol. 223(C).
    3. Laudari, Hari Krishna & Aryal, Kishor & Maraseni, Tek & Pariyar, Shiva & Pant, Basant & Bhattarai, Sushma & Kaini, Tika Raj & Karki, Gyanendra & Marahattha, Anisha, 2022. "Sixty-five years of forest restoration in Nepal: Lessons learned and way forward," Land Use Policy, Elsevier, vol. 115(C).
    4. Rossi, David & Kuusela, Olli-Pekka & Dunn, Christopher, 2022. "A microeconometric analysis of wildfire suppression decisions in the Western United States," Ecological Economics, Elsevier, vol. 200(C).
    5. Dong, Lingbo & Chen, Guanmou & Chung, Woodam & Liu, Zhaogang, 2024. "Variations on the maximum density-size lines to climate and site factors for Larix spp. plantations in northeast China," Ecological Modelling, Elsevier, vol. 498(C).
    6. Secco, Laura & Pisani, Elena & Da Re, Riccardo & Rogelja, Todora & Burlando, Catie & Vicentini, Kamini & Pettenella, Davide & Masiero, Mauro & Miller, David & Nijnjk, Maria, 2019. "Towards a method of evaluating social innovation in forest-dependent rural communities: First suggestions from a science-stakeholder collaboration," Forest Policy and Economics, Elsevier, vol. 104(C), pages 9-22.
    7. Ager, Alan A. & Barros, Ana M.G. & Houtman, Rachel & Seli, Rob & Day, Michelle A., 2020. "Modelling the effect of accelerated forest management on long-term wildfire activity," Ecological Modelling, Elsevier, vol. 421(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0295392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.