IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0293925.html
   My bibliography  Save this article

Predicting preterm birth using explainable machine learning in a prospective cohort of nulliparous and multiparous pregnant women

Author

Listed:
  • Wasif Khan
  • Nazar Zaki
  • Nadirah Ghenimi
  • Amir Ahmad
  • Jiang Bian
  • Mohammad M Masud
  • Nasloon Ali
  • Romona Govender
  • Luai A Ahmed

Abstract

Preterm birth (PTB) presents a complex challenge in pregnancy, often leading to significant perinatal and long-term morbidities. “While machine learning (ML) algorithms have shown promise in PTB prediction, the lack of interpretability in existing models hinders their clinical utility. This study aimed to predict PTB in a pregnant population using ML models, identify the key risk factors associated with PTB through the SHapley Additive exPlanations (SHAP) algorithm, and provide comprehensive explanations for these predictions to assist clinicians in providing appropriate care. This study analyzed a dataset of 3509 pregnant women in the United Arab Emirates and selected 35 risk factors associated with PTB based on the existing medical and artificial intelligence literature. Six ML algorithms were tested, wherein the XGBoost model exhibited the best performance, with an area under the operator receiving curves of 0.735 and 0.723 for parous and nulliparous women, respectively. The SHAP feature attribution framework was employed to identify the most significant risk factors linked to PTB. Additionally, individual patient analysis was performed using the SHAP and the local interpretable model-agnostic explanation algorithms (LIME). The overall incidence of PTB was 11.23% (11 and 12.1% in parous and nulliparous women, respectively). The main risk factors associated with PTB in parous women are previous PTB, previous cesarean section, preeclampsia during pregnancy, and maternal age. In nulliparous women, body mass index at delivery, maternal age, and the presence of amniotic infection were the most relevant risk factors. The trained ML prediction model developed in this study holds promise as a valuable screening tool for predicting PTB within this specific population. Furthermore, SHAP and LIME analyses can assist clinicians in understanding the individualized impact of each risk factor on their patients and provide appropriate care to reduce morbidity and mortality related to PTB.

Suggested Citation

  • Wasif Khan & Nazar Zaki & Nadirah Ghenimi & Amir Ahmad & Jiang Bian & Mohammad M Masud & Nasloon Ali & Romona Govender & Luai A Ahmed, 2023. "Predicting preterm birth using explainable machine learning in a prospective cohort of nulliparous and multiparous pregnant women," PLOS ONE, Public Library of Science, vol. 18(12), pages 1-17, December.
  • Handle: RePEc:plo:pone00:0293925
    DOI: 10.1371/journal.pone.0293925
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0293925
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0293925&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0293925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katelyn J Rittenhouse & Bellington Vwalika & Alexander Keil & Jennifer Winston & Marie Stoner & Joan T Price & Monica Kapasa & Mulaya Mubambe & Vanilla Banda & Whyson Muunga & Jeffrey S A Stringer, 2019. "Improving preterm newborn identification in low-resource settings with machine learning," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-12, February.
    2. Simon Meyer Lauritsen & Mads Kristensen & Mathias Vassard Olsen & Morten Skaarup Larsen & Katrine Meyer Lauritsen & Marianne Johansson Jørgensen & Jeppe Lange & Bo Thiesson, 2020. "Explainable artificial intelligence model to predict acute critical illness from electronic health records," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nohyeong Jeong & Shinyun Park & Subhamoy Mahajan & Ji Zhou & Jens Blotevogel & Ying Li & Tiezheng Tong & Yongsheng Chen, 2024. "Elucidating governing factors of PFAS removal by polyamide membranes using machine learning and molecular simulations," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Minoru Sakuragi & Eiichiro Uchino & Noriaki Sato & Takeshi Matsubara & Akihiko Ueda & Yohei Mineharu & Ryosuke Kojima & Motoko Yanagita & Yasushi Okuno, 2024. "Interpretable machine learning-based individual analysis of acute kidney injury in immune checkpoint inhibitor therapy," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-14, March.
    3. Gabriel Ferrettini & Elodie Escriva & Julien Aligon & Jean-Baptiste Excoffier & Chantal Soulé-Dupuy, 2022. "Coalitional Strategies for Efficient Individual Prediction Explanation," Information Systems Frontiers, Springer, vol. 24(1), pages 49-75, February.
    4. Haque, AKM Bahalul & Islam, A.K.M. Najmul & Mikalef, Patrick, 2023. "Explainable Artificial Intelligence (XAI) from a user perspective: A synthesis of prior literature and problematizing avenues for future research," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    5. Mohammad Ordikhani & Mohammad Saniee Abadeh & Christof Prugger & Razieh Hassannejad & Noushin Mohammadifard & Nizal Sarrafzadegan, 2022. "An evolutionary machine learning algorithm for cardiovascular disease risk prediction," PLOS ONE, Public Library of Science, vol. 17(7), pages 1-16, July.
    6. Wang, Fujin & Zhao, Zhibin & Zhai, Zhi & Shang, Zuogang & Yan, Ruqiang & Chen, Xuefeng, 2023. "Explainability-driven model improvement for SOH estimation of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 232(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0293925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.