IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0289822.html
   My bibliography  Save this article

The performance of restricted AIC for irregular histogram models

Author

Listed:
  • Sahika Gokmen
  • Johan Lyhagen

Abstract

Histograms are frequently used to perform a preliminary study of data, such as finding outliers and determining the distribution’s shape. It is common knowledge that choosing an appropriate number of bins is crucial to revealing the right information. It’s also well known that using bins of different widths, which called unequal bin width, is preferable to using bins of equal width if the bin width is selected carefully. However this is a much difficult issue. In this research, a novel approach to AIC for histograms with unequal bin widths was proposed. We demonstrate the advantage of the suggested approach in comparison to others using both extensive Monte Carlo simulations and empirical examples.

Suggested Citation

  • Sahika Gokmen & Johan Lyhagen, 2024. "The performance of restricted AIC for irregular histogram models," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-15, May.
  • Handle: RePEc:plo:pone00:0289822
    DOI: 10.1371/journal.pone.0289822
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289822
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0289822&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0289822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Scott, David W. & Scott, Warren R., 2008. "Smoothed Histograms for Frequency Data on Irregular Intervals," The American Statistician, American Statistical Association, vol. 62, pages 256-261, August.
    2. Celisse, Alain & Robin, Stephane, 2008. "Nonparametric density estimation by exact leave-p-out cross-validation," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2350-2368, January.
    3. A. Azzalini & A.W. Bowman, 1990. "A Look at Some Data on the Old Faithful Geyser," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 39(3), pages 357-365, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    2. Fred Huffer & Cheolyong Park, 2000. "A test for multivariate structure," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 633-650.
    3. Yana Melnykov & Xuwen Zhu & Volodymyr Melnykov, 2021. "Transformation mixture modeling for skewed data groups with heavy tails and scatter," Computational Statistics, Springer, vol. 36(1), pages 61-78, March.
    4. repec:cte:wsrepe:ws1450804 is not listed on IDEAS
    5. José E. Chacón, 2019. "Mixture model modal clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 379-404, June.
    6. Scott, David W., 2004. "Multivariate Density Estimation and Visualization," Papers 2004,16, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    7. Sobom M. Somé & Célestin C. Kokonendji & Smail Adjabi & Naushad A. Mamode Khan & Said Beddek, 2024. "Multiple combined gamma kernel estimations for nonnegative data with Bayesian adaptive bandwidths," Computational Statistics, Springer, vol. 39(2), pages 905-937, April.
    8. Browne, Ryan P., 2022. "Revitalizing the multivariate elliptical leptokurtic-normal distribution and its application in model-based clustering," Statistics & Probability Letters, Elsevier, vol. 190(C).
    9. Chainarong Amornbunchornvej & Elena Zheleva & Tanya Berger-Wolf, 2020. "Variable-lag Granger Causality and Transfer Entropy for Time Series Analysis," Papers 2002.00208, arXiv.org, revised Jun 2020.
    10. Kirschenmann, T.H. & Damien, P. & Walker, S.G., 2015. "A note on the e–a histogram," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 105-109.
    11. Thiago G. Ramires & Luiz R. Nakamura & Ana J. Righetto & Andréa C. Konrath & Carlos A. B. Pereira, 2021. "Incorporating Clustering Techniques into GAMLSS," Stats, MDPI, vol. 4(4), pages 1-15, November.
    12. Hyndman, R.J. & Yao, Q., 1998. "Nonparametric Estimation and Symmetry Tests for Conditional Density Functions," Monash Econometrics and Business Statistics Working Papers 17/98, Monash University, Department of Econometrics and Business Statistics.
    13. Álvarez, Adolfo & Peña, Daniel, 2014. "Recombining partitions from multivariate data: a clustering method on Bayes factors," DES - Working Papers. Statistics and Econometrics. WS ws140804, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Eilers, Paul H.C. & Borgdorff, M.W., 2007. "Non-parametric log-concave mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5444-5451, July.
    15. Domma, Filippo & Condino, Francesca, 2014. "A new class of distribution functions for lifetime data," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 36-45.
    16. Rozenholc, Yves & Mildenberger, Thoralf & Gather, Ursula, 2009. "Constructing irregular histograms by penalized likelihood," Technical Reports 2009,04, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    17. Bose, Arup & Dutta, Santanu, 2013. "Density estimation using bootstrap bandwidth selector," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 245-256.
    18. Matthew Heiner & Athanasios Kottas, 2022. "Autoregressive density modeling with the Gaussian process mixture transition distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 157-177, March.
    19. Gramacki, Artur & Gramacki, Jarosław, 2017. "FFT-based fast bandwidth selector for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 27-45.
    20. Bashtannyk, David M. & Hyndman, Rob J., 2001. "Bandwidth selection for kernel conditional density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 36(3), pages 279-298, May.
    21. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0289822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.