IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0283989.html
   My bibliography  Save this article

Genomic prediction of rice mesocotyl length indicative of directing seeding suitability using a half-sib hybrid population

Author

Listed:
  • Liang Chen
  • Jindong Liu
  • Sang He
  • Liyong Cao
  • Guoyou Ye

Abstract

Direct seeding has been widely adopted as an economical and labor-saving technique in rice production, though problems such as low seedling emergence rate, emergence irregularity and poor lodging resistance are existing. These problems are currently partially overcome by increasing seeding rate, however it is not acceptable for hybrid rice due to the high seed cost. Improving direct seeding by breeding is seen as the ultimate solution to these problems. For hybrid breeding, identifying superior hybrids among a massive number of hybrids from crossings between male and female parental populations by phenotypic evaluation is tedious and costly. Contrastingly, genomic selection/prediction (GS/GP) could efficiently detect the superior hybrids capitalizing on genomic data, which holds a great potential in plant hybrids breeding. In this study, we utilized 402 rice inbred varieties and 401 hybrids to investigate the effectiveness of GS on rice mesocotyl length, a representative indicative trait of direct seeding suitability. Several GP methods and training set designs were studied to seek the optimal scenario of hybrid prediction. It was shown that using half-sib hybrids as training set with the phenotypes of all parental lines being fitted as a covariate could optimally predict mesocotyl length. Partitioning the molecular markers into trait-associated and -unassociated groups based on genome-wide association study using all parental lines and hybrids could further improve the prediction accuracy. This study indicates that GS could be an effective and efficient method for hybrid breeding for rice direct seeding.

Suggested Citation

  • Liang Chen & Jindong Liu & Sang He & Liyong Cao & Guoyou Ye, 2023. "Genomic prediction of rice mesocotyl length indicative of directing seeding suitability using a half-sib hybrid population," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-20, April.
  • Handle: RePEc:plo:pone00:0283989
    DOI: 10.1371/journal.pone.0283989
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283989
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0283989&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0283989?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gerhard Moser & Sang Hong Lee & Ben J Hayes & Michael E Goddard & Naomi R Wray & Peter M Visscher, 2015. "Simultaneous Discovery, Estimation and Prediction Analysis of Complex Traits Using a Bayesian Mixture Model," PLOS Genetics, Public Library of Science, vol. 11(4), pages 1-22, April.
    2. Giovanny Covarrubias-Pazaran, 2016. "Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
    3. Bryan N Howie & Peter Donnelly & Jonathan Marchini, 2009. "A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies," PLOS Genetics, Public Library of Science, vol. 5(6), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Svensson & Matilda Rentoft & Anna M Dahlin & Emma Lundholm & Pall I Olason & Andreas Sjödin & Carin Nylander & Beatrice S Melin & Johan Trygg & Erik Johansson, 2020. "A whole-genome sequenced control population in northern Sweden reveals subregional genetic differences," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-18, September.
    2. Chuan Gao & Nan Wang & Xiuqing Guo & Julie T Ziegler & Kent D Taylor & Anny H Xiang & Yang Hai & Steven J Kridel & Jerry L Nadler & Fouad Kandeel & Leslie J Raffel & Yii-Der I Chen & Jill M Norris & J, 2015. "A Comprehensive Analysis of Common and Rare Variants to Identify Adiposity Loci in Hispanic Americans: The IRAS Family Study (IRASFS)," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-17, November.
    3. Paul S de Vries & Maria Sabater-Lleal & Daniel I Chasman & Stella Trompet & Tarunveer S Ahluwalia & Alexander Teumer & Marcus E Kleber & Ming-Huei Chen & Jie Jin Wang & John R Attia & Riccardo E Mario, 2017. "Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-22, January.
    4. Bo Jiang & Jun S. Liu, 2015. "Bayesian Partition Models for Identifying Expression Quantitative Trait Loci," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1350-1361, December.
    5. Rakesh Chettier & Lesa Nelson & James W Ogilvie & Hans M Albertsen & Kenneth Ward, 2015. "Haplotypes at LBX1 Have Distinct Inheritance Patterns with Opposite Effects in Adolescent Idiopathic Scoliosis," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-11, February.
    6. Michel S. Naslavsky & Marilia O. Scliar & Guilherme L. Yamamoto & Jaqueline Yu Ting Wang & Stepanka Zverinova & Tatiana Karp & Kelly Nunes & José Ricardo Magliocco Ceroni & Diego Lima Carvalho & Carlo, 2022. "Whole-genome sequencing of 1,171 elderly admixed individuals from Brazil," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Steinrücken, Matthias & Paul, Joshua S. & Song, Yun S., 2013. "A sequentially Markov conditional sampling distribution for structured populations with migration and recombination," Theoretical Population Biology, Elsevier, vol. 87(C), pages 51-61.
    8. Martina Hančová & Andrej Gajdoš & Jozef Hanč & Gabriela Vozáriková, 2021. "Estimating variances in time series kriging using convex optimization and empirical BLUPs," Statistical Papers, Springer, vol. 62(4), pages 1899-1938, August.
    9. Anshuman Sewda & A J Agopian & Elizabeth Goldmuntz & Hakon Hakonarson & Bernice E Morrow & Fadi Musfee & Deanne Taylor & Laura E Mitchell & on behalf of the Pediatric Cardiac Genomics Consortium, 2020. "Gene-based analyses of the maternal genome implicate maternal effect genes as risk factors for conotruncal heart defects," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-15, June.
    10. Lin Yuan & Chang-An Yuan & De-Shuang Huang, 2017. "FAACOSE: A Fast Adaptive Ant Colony Optimization Algorithm for Detecting SNP Epistasis," Complexity, Hindawi, vol. 2017, pages 1-10, September.
    11. repec:plo:pone00:0172082 is not listed on IDEAS
    12. repec:plo:pone00:0084514 is not listed on IDEAS
    13. Mathias Ruben Gemmer & Chris Richter & Yong Jiang & Thomas Schmutzer & Manish L Raorane & Björn Junker & Klaus Pillen & Andreas Maurer, 2020. "Can metabolic prediction be an alternative to genomic prediction in barley?," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-15, June.
    14. Carl Nettelblad, 2013. "Breakdown of Methods for Phasing and Imputation in the Presence of Double Genotype Sharing," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-5, March.
    15. repec:plo:pgen00:1003220 is not listed on IDEAS
    16. Viinikainen, Jutta & Bryson, Alex & Böckerman, Petri & Kari, Jaana T. & Lehtimäki, Terho & Raitakari, Olli & Viikari, Jorma & Pehkonen, Jaakko, 2022. "Does better education mitigate risky health behavior? A mendelian randomization study," Economics & Human Biology, Elsevier, vol. 46(C).
    17. Cavin K Ward-Caviness & Paul S de Vries & Kerri L Wiggins & Jennifer E Huffman & Lisa R Yanek & Lawrence F Bielak & Franco Giulianini & Xiuqing Guo & Marcus E Kleber & Tim Kacprowski & Stefan Groß & A, 2019. "Mendelian randomization evaluation of causal effects of fibrinogen on incident coronary heart disease," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-18, May.
    18. Carla Márquez-Luna & Steven Gazal & Po-Ru Loh & Samuel S. Kim & Nicholas Furlotte & Adam Auton & Alkes L. Price, 2021. "Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    19. Reyna Persa & Martin Grondona & Diego Jarquin, 2021. "Development of a Genomic Prediction Pipeline for Maintaining Comparable Sample Sizes in Training and Testing Sets across Prediction Schemes Accounting for the Genotype-by-Environment Interaction," Agriculture, MDPI, vol. 11(10), pages 1-17, September.
    20. Guilherme Bravim Canal & Cynthia Aparecida Valiati Barreto & Francine Alves Nogueira de Almeida & Iasmine Ramos Zaidan & Diego Pereira do Couto & Camila Ferreira Azevedo & Moysés Nascimento & Marcia F, 2023. "Single and multi-trait genomic prediction for agronomic traits in Euterpe edulis," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-19, April.
    21. Ani Manichaikul & Xin-Qun Wang & Solomon K Musani & David M Herrington & Wendy S Post & James G Wilson & Stephen S Rich & Annabelle Rodriguez, 2015. "Association of the Lipoprotein Receptor SCARB1 Common Missense Variant rs4238001 with Incident Coronary Heart Disease," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
    22. Morten Dybdahl Krebs & Gonçalo Espregueira Themudo & Michael Eriksen Benros & Ole Mors & Anders D. Børglum & David Hougaard & Preben Bo Mortensen & Merete Nordentoft & Michael J. Gandal & Chun Chieh F, 2021. "Associations between patterns in comorbid diagnostic trajectories of individuals with schizophrenia and etiological factors," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    23. Joseph J. Hale & Takeshi Matsui & Ilan Goldstein & Martin N. Mullis & Kevin R. Roy & Christopher Ne Ville & Darach Miller & Charley Wang & Trevor Reynolds & Lars M. Steinmetz & Sasha F. Levy & Ian M. , 2024. "Genome-scale analysis of interactions between genetic perturbations and natural variation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0283989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.