IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0283100.html
   My bibliography  Save this article

Study of Bayesian variable selection method on mixed linear regression models

Author

Listed:
  • Yong Li
  • Hefei Liu
  • Rubing Li

Abstract

Variable selection has always been an important issue in statistics. When a linear regression model is used to fit data, selecting appropriate explanatory variables that strongly impact the response variables has a significant effect on the model prediction accuracy and interpretation effect. redThis study introduces the Bayesian adaptive group Lasso method to solve the variable selection problem under a mixed linear regression model with a hidden state and explanatory variables with a grouping structure. First, the definition of the implicit state mixed linear regression model is presented. Thereafter, the Bayesian adaptive group Lasso method is used to determine the penalty function and parameters, after which each parameter’s specific form of the fully conditional posterior distribution is calculated. Moreover, the Gibbs algorithm design is outlined. Simulation experiments are conducted to compare the variable selection and parameter estimation effects in different states. Finally, a dataset of Alzheimer’s Disease is used for application analysis. The results demonstrate that the proposed method can identify the observation from different hidden states, but the results of the variable selection in different states are obviously different.

Suggested Citation

  • Yong Li & Hefei Liu & Rubing Li, 2023. "Study of Bayesian variable selection method on mixed linear regression models," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-13, March.
  • Handle: RePEc:plo:pone00:0283100
    DOI: 10.1371/journal.pone.0283100
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283100
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0283100&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0283100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Hansheng & Leng, Chenlei, 2008. "A note on adaptive group lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5277-5286, August.
    2. Liu, Hefei & Song, Xinyuan & Zhang, Baoxue, 2022. "Varying-coefficient hidden Markov models with zero-effect regions," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    3. Chenlei Leng & Minh-Ngoc Tran & David Nott, 2014. "Bayesian adaptive Lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 221-244, April.
    4. Cheryl J. Flynn & Clifford M. Hurvich & Jeffrey S. Simonoff, 2013. "Efficiency for Regularization Parameter Selection in Penalized Likelihood Estimation of Misspecified Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1031-1043, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    2. D. Calvetti & E. Somersalo, 2025. "Distributed Tikhonov regularization for ill-posed inverse problems from a Bayesian perspective," Computational Optimization and Applications, Springer, vol. 91(2), pages 541-572, June.
    3. Xianyi Wu & Xian Zhou, 2019. "On Hodges’ superefficiency and merits of oracle property in model selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1093-1119, October.
    4. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    5. Dong, C. & Li, S., 2021. "Specification Lasso and an Application in Financial Markets," Cambridge Working Papers in Economics 2139, Faculty of Economics, University of Cambridge.
    6. Hauzenberger, Niko & Pfarrhofer, Michael & Rossini, Luca, 2025. "Sparse time-varying parameter VECMs with an application to modeling electricity prices," International Journal of Forecasting, Elsevier, vol. 41(1), pages 361-376.
    7. Fei Jin & Lung-fei Lee, 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices," Econometrics, MDPI, vol. 6(1), pages 1-24, February.
    8. Zeng, Qing & Lu, Xinjie & Xu, Jin & Lin, Yu, 2024. "Macro-Driven Stock Market Volatility Prediction: Insights from a New Hybrid Machine Learning Approach," International Review of Financial Analysis, Elsevier, vol. 96(PB).
    9. Yuanyuan Shen & Katherine P. Liao & Tianxi Cai, 2015. "Sparse kernel machine regression for ordinal outcomes," Biometrics, The International Biometric Society, vol. 71(1), pages 63-70, March.
    10. Xu Wang & JinRong Wang & Michal Fečkan, 2020. "BP Neural Network Calculus in Economic Growth Modelling of the Group of Seven," Mathematics, MDPI, vol. 8(1), pages 1-11, January.
    11. Hollstein, Fabian & Prokopczuk, Marcel & Tharann, Björn & Wese Simen, Chardin, 2025. "Predicting the equity premium around the globe: Comprehensive evidence from a large sample," International Journal of Forecasting, Elsevier, vol. 41(1), pages 208-228.
    12. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    13. Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
    14. Muhammad Jaffri Mohd Nasir & Ramzan Nazim Khan & Gopalan Nair & Darfiana Nur, 2024. "Active-set based block coordinate descent algorithm in group LASSO for self-exciting threshold autoregressive model," Statistical Papers, Springer, vol. 65(5), pages 2973-3006, July.
    15. Hu, Jianhua & Liu, Xiaoqian & Liu, Xu & Xia, Ningning, 2022. "Some aspects of response variable selection and estimation in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    16. Posch, Konstantin & Arbeiter, Maximilian & Pilz, Juergen, 2020. "A novel Bayesian approach for variable selection in linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    17. Mingqiu Wang & Guo-Liang Tian, 2019. "Adaptive group Lasso for high-dimensional generalized linear models," Statistical Papers, Springer, vol. 60(5), pages 1469-1486, October.
    18. Daehan Won & Hasan Manzour & Wanpracha Chaovalitwongse, 2020. "Convex Optimization for Group Feature Selection in Networked Data," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 182-198, January.
    19. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    20. Guo, Xiao & Zhang, Hai & Wang, Yao & Wu, Jiang-Lun, 2015. "Model selection and estimation in high dimensional regression models with group SCAD," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 86-92.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0283100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.