IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0282514.html
   My bibliography  Save this article

A modified weighted chimp optimization algorithm for training feed-forward neural network

Author

Listed:
  • Eman A Atta
  • Ahmed F Ali
  • Ahmed A Elshamy

Abstract

Swarm intelligence algorithms (SI) have an excellent ability to search for the optimal solution and they are applying two mechanisms during the search. The first mechanism is exploration, to explore a vast area in the search space, and when they found a promising area they switch from the exploration to the exploitation mechanism. A good SI algorithm can balance the exploration and the exploitation mechanism. In this paper, we propose a modified version of the chimp optimization algorithm (ChOA) to train a feed-forward neural network (FNN). The proposed algorithm is called a modified weighted chimp optimization algorithm (MWChOA). The main drawback of the standard ChOA and the weighted chimp optimization algorithm (WChOA) is they can be trapped in local optima because most of the solutions update their positions based on the position of the four leader solutions in the population. In the proposed algorithm, we reduced the number of leader solutions from four to three, and we found that reducing the number of leader solutions enhances the search and increases the exploration phase in the proposed algorithm, and avoids trapping in local optima. We test the proposed algorithm on the Eleven dataset and compare it against 16 SI algorithms. The results show that the proposed algorithm can achieve success to train the FNN when compare to the other SI algorithms.

Suggested Citation

  • Eman A Atta & Ahmed F Ali & Ahmed A Elshamy, 2023. "A modified weighted chimp optimization algorithm for training feed-forward neural network," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-38, March.
  • Handle: RePEc:plo:pone00:0282514
    DOI: 10.1371/journal.pone.0282514
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282514
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0282514&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0282514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Olvi L. Mangasarian & W. Nick Street & William H. Wolberg, 1995. "Breast Cancer Diagnosis and Prognosis Via Linear Programming," Operations Research, INFORMS, vol. 43(4), pages 570-577, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sexton, Randall S. & Dorsey, Robert E. & Johnson, John D., 1999. "Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing," European Journal of Operational Research, Elsevier, vol. 114(3), pages 589-601, May.
    2. Brandner, Hubertus & Lessmann, Stefan & Voß, Stefan, 2013. "A memetic approach to construct transductive discrete support vector machines," European Journal of Operational Research, Elsevier, vol. 230(3), pages 581-595.
    3. W. Art Chaovalitwongse & Ya-Ju Fan & Rajesh C. Sachdeo, 2008. "Novel Optimization Models for Abnormal Brain Activity Classification," Operations Research, INFORMS, vol. 56(6), pages 1450-1460, December.
    4. Hamid Haji Aghabozorgi & Farzad Eskandari, 2024. "Clustering and estimation of finite mixture models under bivariate ranked set sampling with application to a breast cancer study," Statistical Papers, Springer, vol. 65(2), pages 705-736, April.
    5. Tamilselvan, Prasanna & Wang, Pingfeng, 2013. "Failure diagnosis using deep belief learning based health state classification," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 124-135.
    6. Yaqiong Cui & Jukka Sirén & Timo Koski & Jukka Corander, 2016. "Simultaneous Predictive Gaussian Classifiers," Journal of Classification, Springer;The Classification Society, vol. 33(1), pages 73-102, April.
    7. Ramazan Ünlü & Petros Xanthopoulos, 2019. "A weighted framework for unsupervised ensemble learning based on internal quality measures," Annals of Operations Research, Springer, vol. 276(1), pages 229-247, May.
    8. Morris, Katherine & McNicholas, Paul D., 2016. "Clustering, classification, discriminant analysis, and dimension reduction via generalized hyperbolic mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 133-150.
    9. Ryu, Young U. & Chandrasekaran, R. & Jacob, Varghese S., 2007. "Breast cancer prediction using the isotonic separation technique," European Journal of Operational Research, Elsevier, vol. 181(2), pages 842-854, September.
    10. B Baesens & C Mues & D Martens & J Vanthienen, 2009. "50 years of data mining and OR: upcoming trends and challenges," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 16-23, May.
    11. Sahin, Özge & Czado, Claudia, 2022. "Vine copula mixture models and clustering for non-Gaussian data," Econometrics and Statistics, Elsevier, vol. 22(C), pages 136-158.
    12. A. Astorino & M. Gaudioso, 2002. "Polyhedral Separability Through Successive LP," Journal of Optimization Theory and Applications, Springer, vol. 112(2), pages 265-293, February.
    13. Alejandro Murua & Nicolas Wicker, 2015. "Kernel-based mixture models for classification," Computational Statistics, Springer, vol. 30(2), pages 317-344, June.
    14. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    15. Sung, Bongjung & Lee, Jaeyong, 2023. "Covariance structure estimation with Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    16. Wang, Wan-Lun, 2015. "Mixtures of common t-factor analyzers for modeling high-dimensional data with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 223-235.
    17. Wang, Haifeng & Zheng, Bichen & Yoon, Sang Won & Ko, Hoo Sang, 2018. "A support vector machine-based ensemble algorithm for breast cancer diagnosis," European Journal of Operational Research, Elsevier, vol. 267(2), pages 687-699.
    18. Jun-Ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2017. "Calibration of Distributionally Robust Empirical Optimization Models," Papers 1711.06565, arXiv.org, revised May 2020.
    19. Xin Liu & Bangxin Zhao & Wenqing He, 2020. "Simultaneous Feature Selection and Classification for Data-Adaptive Kernel-Penalized SVM," Mathematics, MDPI, vol. 8(10), pages 1-22, October.
    20. Eva K. Lee & Richard J. Gallagher & David A. Patterson, 2003. "A Linear Programming Approach to Discriminant Analysis with a Reserved-Judgment Region," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 23-41, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0282514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.