IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0282235.html
   My bibliography  Save this article

Applied machine learning to identify differential risk groups underlying externalizing and internalizing problem behaviors trajectories: A case study using a cohort of Asian American children

Author

Listed:
  • Samrachana Adhikari
  • Shiying You
  • Alan Chen
  • Sabrina Cheng
  • Keng-Yen Huang

Abstract

Background: Internalizing and externalizing problems account for over 75% of the mental health burden in children and adolescents in the US, with higher burden among minority children. While complex interactions of multilevel factors are associated with these outcomes and may enable early identification of children in higher risk, prior research has been limited by data and application of traditional analysis methods. In this case example focused on Asian American children, we address the gap by applying data-driven statistical and machine learning methods to study clusters of mental health trajectories among children, investigate optimal predictions of children at high-risk cluster, and identify key early predictors. Methods: Data from the US Early Childhood Longitudinal Study 2010–2011 were used. Multilevel information provided by children, families, teachers, schools, and care-providers were considered as predictors. Unsupervised machine learning algorithm was applied to identify groups of internalizing and externalizing problems trajectories. For prediction of high-risk group, ensemble algorithm, Superlearner, was implemented by combining several supervised machine learning algorithms. Performance of Superlearner and candidate algorithms, including logistic regression, was assessed using discrimination and calibration metrics via crossvalidation. Variable importance measures along with partial dependence plots were utilized to rank and visualize key predictors. Findings: We found two clusters suggesting high- and low-risk groups for both externalizing and internalizing problems trajectories. While Superlearner had overall best discrimination performance, logistic regression had comparable performance for externalizing problems but worse for internalizing problems. Predictions from logistic regression were not well calibrated compared to those from Superlearner, however they were still better than few candidate algorithms. Important predictors identified were combination of test scores, child factors, teacher rated scores, and contextual factors, which showed non-linear associations with predicted probabilities. Conclusions: We demonstrated the application of data-driven analytical approach to predict mental health outcomes among Asian American children. Findings from the cluster analysis can inform critical age for early intervention, while prediction analysis has potential to inform intervention programing prioritization decisions. However, to better understand external validity, replicability, and value of machine learning in broader mental health research, more studies applying similar analytical approach is needed.

Suggested Citation

  • Samrachana Adhikari & Shiying You & Alan Chen & Sabrina Cheng & Keng-Yen Huang, 2023. "Applied machine learning to identify differential risk groups underlying externalizing and internalizing problem behaviors trajectories: A case study using a cohort of Asian American children," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-19, March.
  • Handle: RePEc:plo:pone00:0282235
    DOI: 10.1371/journal.pone.0282235
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282235
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0282235&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0282235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. repec:jss:jstsof:33:i01 is not listed on IDEAS
    3. Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
    4. Olga Klopp & Marianna Pensky, 2013. "Sparse High-dimensional Varying Coefficient Model : Non-asymptotic Minimax Study," Working Papers 2013-30, Center for Research in Economics and Statistics.
    5. Li, Peili & Jiao, Yuling & Lu, Xiliang & Kang, Lican, 2022. "A data-driven line search rule for support recovery in high-dimensional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    6. Osamu Komori & Shinto Eguchi & John B. Copas, 2015. "Generalized t-statistic for two-group classification," Biometrics, The International Biometric Society, vol. 71(2), pages 404-416, June.
    7. Luu, Tung Duy & Fadili, Jalal & Chesneau, Christophe, 2019. "PAC-Bayesian risk bounds for group-analysis sparse regression by exponential weighting," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 209-233.
    8. Yang, Yanlin & Hu, Xuemei & Jiang, Huifeng, 2022. "Group penalized logistic regressions predict up and down trends for stock prices," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    9. Lee, In Gyu & Yoon, Sang Won & Won, Daehan, 2022. "A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1055-1068.
    10. Ruidi Chen & Ioannis Ch. Paschalidis, 2022. "Robust Grouped Variable Selection Using Distributionally Robust Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1042-1071, September.
    11. repec:plo:pone00:0181152 is not listed on IDEAS
    12. Hamsa Bastani, 2021. "Predicting with Proxies: Transfer Learning in High Dimension," Management Science, INFORMS, vol. 67(5), pages 2964-2984, May.
    13. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    14. A. Karagrigoriou & C. Koukouvinos & K. Mylona, 2010. "On the advantages of the non-concave penalized likelihood model selection method with minimum prediction errors in large-scale medical studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 13-24.
    15. Liu, Jianyu & Yu, Guan & Liu, Yufeng, 2019. "Graph-based sparse linear discriminant analysis for high-dimensional classification," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 250-269.
    16. Shota Yamanaka & Nobuo Yamashita, 2018. "Duality of nonconvex optimization with positively homogeneous functions," Computational Optimization and Applications, Springer, vol. 71(2), pages 435-456, November.
    17. Ciarleglio, Adam & Todd Ogden, R., 2016. "Wavelet-based scalar-on-function finite mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 86-96.
    18. Jenna Marie Reps & M Soledad Cepeda & Patrick B Ryan, 2020. "Wisdom of the CROUD: Development and validation of a patient-level prediction model for opioid use disorder using population-level claims data," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-12, February.
    19. Lichun Wang & Yuan You & Heng Lian, 2015. "Convergence and sparsity of Lasso and group Lasso in high-dimensional generalized linear models," Statistical Papers, Springer, vol. 56(3), pages 819-828, August.
    20. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    21. Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics.
    22. Silvia Villa & Lorenzo Rosasco & Sofia Mosci & Alessandro Verri, 2014. "Proximal methods for the latent group lasso penalty," Computational Optimization and Applications, Springer, vol. 58(2), pages 381-407, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0282235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.