IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0280834.html
   My bibliography  Save this article

Influenza surveillance with Baidu index and attention-based long short-term memory model

Author

Listed:
  • Shangfang Dai
  • Litao Han

Abstract

Background: The prediction and prevention of influenza is a public health issue of great concern, and the study of timely acquisition of influenza transmission trend has become an important research topic. For achieving more quicker and accurate detection and prediction, the data recorded on the Internet, especially on the search engine from Google or Baidu are widely introduced into this field. Moreover, with the development of intelligent technology and machine learning algorithm, many updated and advanced trend tracking and forecasting methods are also being used in this research problem. Methods: In this paper, a new recurrent neural network architecture, attention-based long short-term memory model is proposed for influenza surveillance. This is a kind of deep learning model which is trained by processing from Baidu Index series so as to fit the real influenza survey time series. Previous studies on influenza surveillance by Baidu Index mostly used traditional autoregressive moving average model or classical machine learning models such as logarithmic linear regression, support vector regression or multi-layer perception model to fit influenza like illness data, which less considered the deep learning structure. Meanwhile, some new model that considered the deep learning structure did not take into account the application of Baidu index data. This study considers introducing the recurrent neural network with long short-term memory combined with attention mechanism into the influenza surveillance research model, which not only fits the research problems well in model structure, but also provides research methods based on Baidu index. Results: The actual survey data and Baidu Index data are used to train and test the proposed attention-based long short-term memory model and the other comparison models, so as to iterate the value of the model parameters, and to describe and predict the influenza epidemic situation. The experimental results show that our proposed model has better performance in the mean absolute error, mean absolute percentage error, index of agreement and other indicators than the other comparison models. Conclusion: Our proposed attention-based long short-term memory model vividly verifies the ability of this attention-based long short-term memory structure for better surveillance and prediction the trend of influenza. In comparison with some of the latest models and methods in this research field, the model we proposed is also excellent in effect, even more lightweight and robust. Future research direction can consider fusing multimodal data based on this model and developing more application scenarios.

Suggested Citation

  • Shangfang Dai & Litao Han, 2023. "Influenza surveillance with Baidu index and attention-based long short-term memory model," PLOS ONE, Public Library of Science, vol. 18(1), pages 1-20, January.
  • Handle: RePEc:plo:pone00:0280834
    DOI: 10.1371/journal.pone.0280834
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0280834
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0280834&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0280834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrea Freyer Dugas & Mehdi Jalalpour & Yulia Gel & Scott Levin & Fred Torcaso & Takeru Igusa & Richard E Rothman, 2013. "Influenza Forecasting with Google Flu Trends," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    2. repec:plo:pone00:0018687 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linying Yang & Teng Zhang & Peter Glynn & David Scheinker, 2021. "The development and deployment of a model for hospital-level COVID-19 associated patient demand intervals from consistent estimators (DICE)," Health Care Management Science, Springer, vol. 24(2), pages 375-401, June.
    2. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    3. Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    4. Jose L Herrera & Ravi Srinivasan & John S Brownstein & Alison P Galvani & Lauren Ancel Meyers, 2016. "Disease Surveillance on Complex Social Networks," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-16, July.
    5. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    6. Mansour Ebrahimi & Parisa Aghagolzadeh & Narges Shamabadi & Ahmad Tahmasebi & Mohammed Alsharifi & David L Adelson & Farhid Hemmatzadeh & Esmaeil Ebrahimie, 2014. "Understanding the Underlying Mechanism of HA-Subtyping in the Level of Physic-Chemical Characteristics of Protein," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-14, May.
    7. Victor Olsavszky & Mihnea Dosius & Cristian Vladescu & Johannes Benecke, 2020. "Time Series Analysis and Forecasting with Automated Machine Learning on a National ICD-10 Database," IJERPH, MDPI, vol. 17(14), pages 1-17, July.
    8. Daniel Alejandro Gónzalez-Bandala & Juan Carlos Cuevas-Tello & Daniel E. Noyola & Andreu Comas-García & Christian A García-Sepúlveda, 2020. "Computational Forecasting Methodology for Acute Respiratory Infectious Disease Dynamics," IJERPH, MDPI, vol. 17(12), pages 1-20, June.
    9. Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
    10. Tian-Shyug Lee & I-Fei Chen & Ting-Jen Chang & Chi-Jie Lu, 2020. "Forecasting Weekly Influenza Outpatient Visits Using a Two-Dimensional Hierarchical Decision Tree Scheme," IJERPH, MDPI, vol. 17(13), pages 1-15, July.
    11. Nicolás Gonzálvez‐Gallego & María Concepción Pérez‐Cárceles & Laura Nieto‐Torrejón, 2024. "Do search queries predict violence against women? A forecasting model based on Google Trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1607-1614, August.
    12. Martina Halouskov'a & Daniel Stav{s}ek & Mat'uv{s} Horv'ath, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Papers 2205.05985, arXiv.org, revised Aug 2022.
    13. Sangwon Chae & Sungjun Kwon & Donghyun Lee, 2018. "Predicting Infectious Disease Using Deep Learning and Big Data," IJERPH, MDPI, vol. 15(8), pages 1-20, July.
    14. Chris Allen & Ming-Hsiang Tsou & Anoshe Aslam & Anna Nagel & Jean-Mark Gawron, 2016. "Applying GIS and Machine Learning Methods to Twitter Data for Multiscale Surveillance of Influenza," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-10, July.
    15. Qingguo Ma & Wuke Zhang, 2015. "Public Mood and Consumption Choices: Evidence from Sales of Sony Cameras on Taobao," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-11, April.
    16. Symitsi, Efthymia & Markellos, Raphael N. & Mantrala, Murali K., 2022. "Keyword portfolio optimization in paid search advertising," European Journal of Operational Research, Elsevier, vol. 303(2), pages 767-778.
    17. Halousková, Martina & Stašek, Daniel & Horváth, Matúš, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Finance Research Letters, Elsevier, vol. 50(C).
    18. Livio Fenga, 2020. "Filtering and prediction of noisy and unstable signals: The case of Google Trends data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 281-295, March.
    19. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2015. "Flexible Modeling of Epidemics with an Empirical Bayes Framework," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-18, August.
    20. Kookjin Lee & Jaideep Ray & Cosmin Safta, 2021. "The predictive skill of convolutional neural networks models for disease forecasting," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-26, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0280834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.