IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0279174.html
   My bibliography  Save this article

Personalized breast cancer onset prediction from lifestyle and health history information

Author

Listed:
  • Shi-ang Qi
  • Neeraj Kumar
  • Jian-Yi Xu
  • Jaykumar Patel
  • Sambasivarao Damaraju
  • Grace Shen-Tu
  • Russell Greiner

Abstract

We propose a method to predict when a woman will develop breast cancer (BCa) from her lifestyle and health history features. To address this objective, we use data from the Alberta’s Tomorrow Project of 18,288 women to train Individual Survival Distribution (ISD) models to predict an individual’s Breast-Cancer-Onset (BCaO) probability curve. We show that our three-step approach–(1) filling missing data with multiple imputations by chained equations, followed by (2) feature selection with the multivariate Cox method, and finally, (3) using MTLR to learn an ISD model–produced the model with the smallest L1-Hinge loss among all calibrated models with comparable C-index. We also identified 7 actionable lifestyle features that a woman can modify and illustrate how this model can predict the quantitative effects of those changes–suggesting how much each will potentially extend her BCa-free time. We anticipate this approach could be used to identify appropriate interventions for individuals with a higher likelihood of developing BCa in their lifetime.

Suggested Citation

  • Shi-ang Qi & Neeraj Kumar & Jian-Yi Xu & Jaykumar Patel & Sambasivarao Damaraju & Grace Shen-Tu & Russell Greiner, 2022. "Personalized breast cancer onset prediction from lifestyle and health history information," PLOS ONE, Public Library of Science, vol. 17(12), pages 1-23, December.
  • Handle: RePEc:plo:pone00:0279174
    DOI: 10.1371/journal.pone.0279174
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0279174
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0279174&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0279174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stute, W., 1993. "Consistent Estimation Under Random Censorship When Covariables Are Present," Journal of Multivariate Analysis, Elsevier, vol. 45(1), pages 89-103, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Weijuan & Zhang, Qingzhao & Ma, Shuangge, 2024. "Hierarchical false discovery rate control for high-dimensional survival analysis with interactions," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    2. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    3. Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    4. Paul Janssen & Noël Veraverbeke, 2024. "Nonparametric estimation of univariate and bivariate survival functions under right censoring: a survey," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(3), pages 211-245, April.
    5. Gabriela Ciuperca, 2025. "Right-censored models by the expectile method," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 31(1), pages 149-186, January.
    6. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    7. Guessoum Zohra & Ould-Said Elias, 2009. "On nonparametric estimation of the regression function under random censorship model," Statistics & Risk Modeling, De Gruyter, vol. 26(3), pages 159-177, April.
    8. Weiyu Li & Valentin Patilea, 2018. "A dimension reduction approach for conditional Kaplan–Meier estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 295-315, June.
    9. Sungwan Bang & Soo-Heang Eo & Yong Mee Cho & Myoungshic Jhun & HyungJun Cho, 2016. "Non-crossing weighted kernel quantile regression with right censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 100-121, January.
    10. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2015. "Tree-based censored regression with applications to insurance," Working Papers hal-01141228, HAL.
    11. Cao, Yongxiu & Yu, Jichang, 2023. "Adjusting for unmeasured confounding in survival causal effect using validation data," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    12. Wenceslao González Manteiga & Cédric Heuchenne & César Sánchez Sellero & Alessandro Beretta, 2020. "Goodness-of-fit tests for censored regression based on artificial data points," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 599-615, June.
    13. Amorim, Ana Paula & de Uña-Álvarez, Jacobo & Meira-Machado, Luís, 2011. "Presmoothing the transition probabilities in the illness-death model," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 797-806, July.
    14. Uña-Álvarez, Jacobo de & González-Manteiga, Wenceslao, 1999. "Strong consistency under proportional censorship when covariables are present," Statistics & Probability Letters, Elsevier, vol. 42(3), pages 283-292, April.
    15. Feriel Bouhadjera & Mohamed Lemdani & Elias Ould Saïd, 2023. "Strong uniform consistency of the local linear relative error regression estimator under left truncation," Statistical Papers, Springer, vol. 64(2), pages 421-447, April.
    16. Jacobo Uña-Álvarez & Noël Veraverbeke, 2013. "Generalized copula-graphic estimator," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 343-360, June.
    17. Miguel A Delgado & Andrés García-Suaza & Pedro H C Sant’Anna, 2022. "Distribution regression in duration analysis: an application to unemployment spells [Lecture notes in statistics: Proceedings]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 675-698.
    18. Zhang, Chun-Xia & Mei, Chang-Lin & Zhang, Jiang-She, 2007. "An empirical study of a test for polynomial relationships in randomly right censored regression models," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6543-6556, August.
    19. Xiaochao Xia & Binyan Jiang & Jialiang Li & Wenyang Zhang, 2016. "Low-dimensional confounder adjustment and high-dimensional penalized estimation for survival analysis," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 547-569, October.
    20. Orbe, Jesus & Nunez-Anton, Vicente, 2006. "Alternative approaches to study lifetime data under different scenarios: from the PH to the modified semiparametric AFT model," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1565-1582, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0279174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.