IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0277169.html
   My bibliography  Save this article

Urban spatial form analysis based on the architectural layout -- Taking Zhengzhou City as an example

Author

Listed:
  • Qindong Fan
  • Xuejian Mei
  • Chenming Zhang
  • Hang Wang

Abstract

The analysis of urban spatial form is the basic research of urban development. Traditional fractal research often focuses on the urban spatial layout, which cannot visually express the specific form, change characteristics and development trend of urban architectural spaces.The urban architectural form is simplified and the basic architectural form templates are extracted, and then, the correlations between architecture form and fractal dimension are built. The results of the case study show that the architectural layout of Zhengzhou City exhibits obvious fractal characteristics, and the combination of the two-dimensional and three-dimensional fractal dimensions is helpful for comprehensively revealing the architectural layout information. Moreover, the fractal dimension of buildings shows that the gradient from the inner to outer ring decreases, similar to the ‘annual growth rings’ of trees. Obvious differences exist in the fractal dimensions of urban buildings in different directions, reflecting the urban expansion direction. This study promotes the visualization of fractal theory and the expression of fractal theory in spatial gradient, providing theoretical and data reference for urban spatial form optimization.

Suggested Citation

  • Qindong Fan & Xuejian Mei & Chenming Zhang & Hang Wang, 2022. "Urban spatial form analysis based on the architectural layout -- Taking Zhengzhou City as an example," PLOS ONE, Public Library of Science, vol. 17(12), pages 1-14, December.
  • Handle: RePEc:plo:pone00:0277169
    DOI: 10.1371/journal.pone.0277169
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277169
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0277169&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0277169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ismail Ercument Ayazli, 2019. "Monitoring of Urban Growth with Improved Model Accuracy by Statistical Methods," Sustainability, MDPI, vol. 11(20), pages 1-14, October.
    2. Jingyun Liang & Lin Xu & Jinning Li & Xiaoying Ding & Naeem Jan, 2022. "Fractal Design of Indoor and Outdoor Forms of Architectural Space Based on a Three-Dimensional Box Dimension Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-10, March.
    3. Francisco Correia & Maria Da graça saraiva & Fernando Da Silva & Isabel Ramos, 1999. "Floodplain Management in Urban Developing Areas. Part I. Urban Growth Scenarios and Land-Use Controls," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(1), pages 1-21, February.
    4. Hoyt, Homer, 1959. "Urban growth in the next 15 years," Business Horizons, Elsevier, vol. 2(2), pages 29-36.
    5. Qindong Fan & Fengtian Du & Hu Li, 2020. "A Study of the Spatial Form of Maling Village, Henan, China," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andre Zerger & Stephen Wealands, 2004. "Beyond Modelling: Linking Models with GIS for Flood Risk Management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 191-208, October.
    2. Jaekyoung Kim & Junsuk Kang, 2020. "Analysis of Flood Damage in the Seoul Metropolitan Government Using Climate Change Scenarios and Mitigation Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    3. Karen Goff & Randall Gentry, 2006. "The Influence of Watershed and Development Characteristics on the Cumulative Impacts of Stormwater Detention Ponds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 829-860, December.
    4. Marcelle Nardelli Baptista & Ricardo Valcarcel & Felipe Araujo Mateus & William Soares Medeiros & Fernando Canto Andrade, 2017. "Impact of Urbanization on the Hydrodynamics of a Water Table in a Floodplain with High Potential for Renaturation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4091-4102, October.
    5. Ayazli, Ismail Ercument, 2024. "Investigating the interactions between spatiotemporal land use/land cover dynamics and private land ownership," Land Use Policy, Elsevier, vol. 141(C).
    6. Georgia Kandilioti & Christos Makropoulos, 2012. "Preliminary flood risk assessment: the case of Athens," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 441-468, March.
    7. Bandi Aneesha Satya & Meshapam Shashi & Deva Pratap, 2019. "A geospatial approach to flash flood hazard mapping in the city of Warangal, Telangana, India," Environmental & Socio-economic Studies, Sciendo, vol. 7(3), pages 1-13, September.
    8. Aili Xie & Pan Liu & Shenglian Guo & Xiaoqi Zhang & Hao Jiang & Guang Yang, 2018. "Optimal Design of Seasonal Flood Limited Water Levels by Jointing Operation of the Reservoir and Floodplains," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 179-193, January.
    9. Jonathon Chill & Larry Mays, 2013. "Determination of the Optimal Location for Developments to Minimize Detention Requirements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5089-5100, December.
    10. Vasileios Mazarakis & Konstantinos Tsanakas & Noam Greenbaum & Dimitrios-Vasileios Batzakis & Alessia Sorrentino & Ioannis Tsodoulos & Kanella Valkanou & Efthimios Karymbalis, 2025. "Flood-Hazard Assessment in the Messapios River Catchment (Central Evia Island, Greece) by Integrating GIS-Based Multi-Criteria Decision Analysis and Analytic Hierarchy Process," Land, MDPI, vol. 14(3), pages 1-24, March.
    11. Marcelle Baptista & Ricardo Valcarcel & Vandré Maya & Fernando Canto, 2014. "Selection of Preferred Floodplains for the Renaturalization of Hydrologic Functions: A Case Study of the Paraíba do Sul River Basin, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4781-4793, October.
    12. Anahi Molar-Cruz & Lukas D Pöhler & Thomas Hamacher & Klaus Diepold, 2022. "Who settles where? Simulating urban growth and socioeconomic level using cellular automata and random forest regression," Environment and Planning B, , vol. 49(6), pages 1697-1714, July.
    13. Derya Ozturk & Nergiz Uzel-Gunini, 2022. "Investigation of the effects of hybrid modeling approaches, factor standardization, and categorical mapping on the performance of landslide susceptibility mapping in Van, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2571-2604, December.
    14. Li Lin & Kangning Xiong & Qi Wang & Rong Zhao & Jiayi Zhou, 2023. "A Review of Village Ecosystem Structure and Stability: Implications for the Karst Desertification Control," Land, MDPI, vol. 12(6), pages 1-18, May.
    15. Tao Shen & Jia Wu & Shuai Yuan & Fulu Kong & Yongshuai Liu, 2024. "Analysis of Urban Spatial Morphology in Harbin: A Study Based on Building Characteristics and Driving Factors," Sustainability, MDPI, vol. 16(20), pages 1-18, October.
    16. J. Yazdi & S. Salehi Neyshabouri, 2012. "A Simulation-Based Optimization Model for Flood Management on a Watershed Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4569-4586, December.
    17. Sohn, Jungyul, 2006. "Evaluating the significance of highway network links under the flood damage: An accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 491-506, July.
    18. Efthimios Karymbalis & Maria Andreou & Dimitrios-Vasileios Batzakis & Konstantinos Tsanakas & Sotirios Karalis, 2021. "Integration of GIS-Based Multicriteria Decision Analysis and Analytic Hierarchy Process for Flood-Hazard Assessment in the Megalo Rema River Catchment (East Attica, Greece)," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    19. Gizem Mestav Sarica & Tinger Zhu & Wei Jian & Edmond Yat-Man Lo & Tso-Chien Pan, 2021. "Spatio-temporal dynamics of flood exposure in Shenzhen from present to future," Environment and Planning B, , vol. 48(5), pages 1011-1024, June.
    20. Mohammad Karamouz & Ozeair Abesi & Ali Moridi & Azadeh Ahmadi, 2009. "Development of Optimization Schemes for Floodplain Management; A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(9), pages 1743-1761, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0277169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.