IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0271413.html
   My bibliography  Save this article

A machine learning approach using partitioning around medoids clustering and random forest classification to model groups of farms in regard to production parameters and bulk tank milk antibody status of two major internal parasites in dairy cows

Author

Listed:
  • Andreas W Oehm
  • Andrea Springer
  • Daniela Jordan
  • Christina Strube
  • Gabriela Knubben-Schweizer
  • Katharina Charlotte Jensen
  • Yury Zablotski

Abstract

Fasciola hepatica and Ostertagia ostertagi are internal parasites of cattle compromising physiology, productivity, and well-being. Parasites are complex in their effect on hosts, sometimes making it difficult to identify clear directions of associations between infection and production parameters. Therefore, unsupervised approaches not assuming a structure reduce the risk of introducing bias to the analysis. They may provide insights which cannot be obtained with conventional, supervised methodology. An unsupervised, exploratory cluster analysis approach using the k–mode algorithm and partitioning around medoids detected two distinct clusters in a cross-sectional data set of milk yield, milk fat content, milk protein content as well as F. hepatica or O. ostertagi bulk tank milk antibody status from 606 dairy farms in three structurally different dairying regions in Germany. Parasite–positive farms grouped together with their respective production parameters to form separate clusters. A random forests algorithm characterised clusters with regard to external variables. Across all study regions, co–infections with F. hepatica or O. ostertagi, respectively, farming type, and pasture access appeared to be the most important factors discriminating clusters (i.e. farms). Furthermore, farm level lameness prevalence, herd size, BCS, stage of lactation, and somatic cell count were relevant criteria distinguishing clusters. This study is among the first to apply a cluster analysis approach in this context and potentially the first to implement a k–medoids algorithm and partitioning around medoids in the veterinary field. The results demonstrated that biologically relevant patterns of parasite status and milk parameters exist between farms positive for F. hepatica or O. ostertagi, respectively, and negative farms. Moreover, the machine learning approach confirmed results of previous work and shed further light on the complex setting of associations a between parasitic diseases, milk yield and milk constituents, and management practices.

Suggested Citation

  • Andreas W Oehm & Andrea Springer & Daniela Jordan & Christina Strube & Gabriela Knubben-Schweizer & Katharina Charlotte Jensen & Yury Zablotski, 2022. "A machine learning approach using partitioning around medoids clustering and random forest classification to model groups of farms in regard to production parameters and bulk tank milk antibody status," PLOS ONE, Public Library of Science, vol. 17(7), pages 1-25, July.
  • Handle: RePEc:plo:pone00:0271413
    DOI: 10.1371/journal.pone.0271413
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271413
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0271413&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0271413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jerome H. Friedman & Jacqueline J. Meulman, 2004. "Clustering objects on subsets of attributes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 815-849, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
    2. Peter D. Hoff, 2005. "Subset Clustering of Binary Sequences, with an Application to Genomic Abnormality Data," Biometrics, The International Biometric Society, vol. 61(4), pages 1027-1036, December.
    3. Nikulin, V., 2006. "Threshold-based clustering with merging and regularization in application to network intrusion detection," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1184-1196, November.
    4. Beibei Yuan & Willem Heiser & Mark Rooij, 2019. "The δ-Machine: Classification Based on Distances Towards Prototypes," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 442-470, October.
    5. Ronglai Shen & Qianxing Mo & Nikolaus Schultz & Venkatraman E Seshan & Adam B Olshen & Jason Huse & Marc Ladanyi & Chris Sander, 2012. "Integrative Subtype Discovery in Glioblastoma Using iCluster," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-9, April.
    6. Benhuai Xie & Wei Pan & Xiaotong Shen, 2008. "Variable Selection in Penalized Model‐Based Clustering Via Regularization on Grouped Parameters," Biometrics, The International Biometric Society, vol. 64(3), pages 921-930, September.
    7. Francisco de A. T. Carvalho & Antonio Irpino & Rosanna Verde & Antonio Balzanella, 2022. "Batch Self-Organizing Maps for Distributional Data with an Automatic Weighting of Variables and Components," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 343-375, July.
    8. Arias-Castro, Ery & Pu, Xiao, 2017. "A simple approach to sparse clustering," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 217-228.
    9. Ioana Manafi & Daniela Marinescu & Monica Roman & Karen Hemming, 2017. "Mobility in Europe: Recent Trends from a Cluster Analysis," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 19(46), pages 711-711, August.
    10. Tsai, Chieh-Yuan & Chiu, Chuang-Cheng, 2008. "Developing a feature weight self-adjustment mechanism for a K-means clustering algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4658-4672, June.
    11. Susan Brudvig & Michael J. Brusco & J. Dennis Cradit, 2019. "Joint selection of variables and clusters: recovering the underlying structure of marketing data," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(1), pages 1-12, March.
    12. Sijian Wang & Ji Zhu, 2008. "Variable Selection for Model-Based High-Dimensional Clustering and Its Application to Microarray Data," Biometrics, The International Biometric Society, vol. 64(2), pages 440-448, June.
    13. Zhaoyu Xing & Yang Wan & Juan Wen & Wei Zhong, 2024. "GOLFS: feature selection via combining both global and local information for high dimensional clustering," Computational Statistics, Springer, vol. 39(5), pages 2651-2675, July.
    14. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
    15. Nicoleta Serban, 2008. "Estimating and clustering curves in the presence of heteroscedastic errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 553-571.
    16. Fabio Centofanti & Antonio Lepore & Biagio Palumbo, 2024. "Sparse and smooth functional data clustering," Statistical Papers, Springer, vol. 65(2), pages 795-825, April.
    17. Floriello, Davide & Vitelli, Valeria, 2017. "Sparse clustering of functional data," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 1-18.
    18. Maarten M. Kampert & Jacqueline J. Meulman & Jerome H. Friedman, 2017. "rCOSA: A Software Package for Clustering Objects on Subsets of Attributes," Journal of Classification, Springer;The Classification Society, vol. 34(3), pages 514-547, October.
    19. Selinski, Silvia, 2006. "Similarity Measures for Clustering SNP and Epidemiological Data," Technical Reports 2006,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    20. Lian, Heng, 2010. "Sparse Bayesian hierarchical modeling of high-dimensional clustering problems," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1728-1737, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0271413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.