IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0270131.html
   My bibliography  Save this article

Quantifying the rise and fall of scientific fields

Author

Listed:
  • Chakresh Kumar Singh
  • Emma Barme
  • Robert Ward
  • Liubov Tupikina
  • Marc Santolini

Abstract

Science advances by pushing the boundaries of the adjacent possible. While the global scientific enterprise grows at an exponential pace, at the mesoscopic level the exploration and exploitation of research ideas are reflected through the rise and fall of research fields. The empirical literature has largely studied such dynamics on a case-by-case basis, with a focus on explaining how and why communities of knowledge production evolve. Although fields rise and fall on different temporal and population scales, they are generally argued to pass through a common set of evolutionary stages. To understand the social processes that drive these stages beyond case studies, we need a way to quantify and compare different fields on the same terms. In this paper we develop techniques for identifying common patterns in the evolution of scientific fields and demonstrate their usefulness using 1.5 million preprints from the arXiv repository covering 175 research fields spanning Physics, Mathematics, Computer Science, Quantitative Biology and Quantitative Finance. We show that fields consistently follow a rise and fall pattern captured by a two parameters right-tailed Gumbel temporal distribution. We introduce a field-specific re-scaled time and explore the generic properties shared by articles and authors at the creation, adoption, peak, and decay evolutionary phases. We find that the early phase of a field is characterized by disruptive works mixing of cognitively distant fields written by small teams of interdisciplinary authors, while late phases exhibit the role of specialized, large teams building on the previous works in the field. This method provides foundations to quantitatively explore the generic patterns underlying the evolution of research fields in science, with general implications in innovation studies.

Suggested Citation

  • Chakresh Kumar Singh & Emma Barme & Robert Ward & Liubov Tupikina & Marc Santolini, 2022. "Quantifying the rise and fall of scientific fields," PLOS ONE, Public Library of Science, vol. 17(6), pages 1-15, June.
  • Handle: RePEc:plo:pone00:0270131
    DOI: 10.1371/journal.pone.0270131
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0270131
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0270131&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0270131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luís M. A. Bettencourt & David I. Kaiser & Jasleen Kaur & Carlos Castillo-Chávez & David E. Wojick, 2008. "Population modeling of the emergence and development of scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(3), pages 495-518, June.
    2. Hongguang Dong & Menghui Li & Ru Liu & Chensheng Wu & Jinshan Wu, 2017. "Allometric scaling in scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 583-594, July.
    3. Johan S. G. Chu & James A. Evans, 2021. "Slowed canonical progress in large fields of science," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(41), pages 2021636118-, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bertoli-Barsotti, Lucio & Gagolewski, Marek & Siudem, Grzegorz & Żogała-Siudem, Barbara, 2024. "Equivalence of inequality indices in the three-dimensional model of informetric impact," Journal of Informetrics, Elsevier, vol. 18(4).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciro D. Esposito & Balazs Szatmari & Jonathan M. C. Sitruk & Nachoem M. Wijnberg, 2024. "Getting off to a good start: emerging academic fields and early-stage equity financing," Small Business Economics, Springer, vol. 62(4), pages 1591-1613, April.
    2. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    3. Xian Gong & Paul X. McCarthy & Colin Griffith & Claire McFarland & Marian-Andrei Rizoiu, 2025. "Cosmos 1.0: a multidimensional map of the emerging technology frontier," Papers 2505.10591, arXiv.org.
    4. Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Liu, Kailiang & Xu, Zhitong & Chen, Chun-houh & Nakano, Junji & Honda, Keisuke, 2023. "Article’s scientific prestige: Measuring the impact of individual articles in the web of science," Journal of Informetrics, Elsevier, vol. 17(1).
    5. Duede, Eamon & Teplitskiy, Misha & Lakhani, Karim & Evans, James, 2024. "Being together in place as a catalyst for scientific advance," Research Policy, Elsevier, vol. 53(2).
    6. John McLevey & Alexander V. Graham & Reid McIlroy-Young & Pierson Browne & Kathryn S. Plaisance, 2018. "Interdisciplinarity and insularity in the diffusion of knowledge: an analysis of disciplinary boundaries between philosophy of science and the sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 331-349, October.
    7. Jimi Adams & Ryan Light, 2014. "Mapping Interdisciplinary Fields: Efficiencies, Gaps and Redundancies in HIV/AIDS Research," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-13, December.
    8. Li, Menghui & Yang, Liying & Zhang, Huina & Shen, Zhesi & Wu, Chensheng & Wu, Jinshan, 2017. "Do mathematicians, economists and biomedical scientists trace large topics more strongly than physicists?," Journal of Informetrics, Elsevier, vol. 11(2), pages 598-607.
    9. Wang, Cheng-Jun & Yan, Lihan & Cui, Haochuan, 2023. "Unpacking the essential tension of knowledge recombination: Analyzing the impact of knowledge spanning on citation impact and disruptive innovation," Journal of Informetrics, Elsevier, vol. 17(4).
    10. Martin Baily & David Byrne & Aidan Kane & Paul Soto, 2025. "Generative AI at the Crossroads: Light Bulb, Dynamo, or Microscope?," Papers 2505.14588, arXiv.org, revised Jun 2025.
    11. Li, Meiling & Wang, Yang & Du, Haifeng & Bai, Aruhan, 2024. "Motivating innovation: The impact of prestigious talent funding on junior scientists," Research Policy, Elsevier, vol. 53(9).
    12. Srayan Datta & Eytan Adar, 2018. "A generative model for scientific concept hierarchies," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-19, February.
    13. Johan Bollen & Herbert Van de Sompel & Aric Hagberg & Luis Bettencourt & Ryan Chute & Marko A Rodriguez & Lyudmila Balakireva, 2009. "Clickstream Data Yields High-Resolution Maps of Science," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-11, March.
    14. Xia Gao & Jiancheng Guan, 2012. "Network model of knowledge diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(3), pages 749-762, March.
    15. Richard T. Carson & Joshua Graff Zivin & Jordan J. Louviere & Sally Sadoff & Jeffrey G. Shrader, 2022. "The Risk of Caution: Evidence from an Experiment," Management Science, INFORMS, vol. 68(12), pages 9042-9060, December.
    16. Krzysztof Klincewicz, 2016. "The emergent dynamics of a technological research topic: the case of graphene," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 319-345, January.
    17. Bettencourt, Luís M.A. & Kaiser, David I. & Kaur, Jasleen, 2009. "Scientific discovery and topological transitions in collaboration networks," Journal of Informetrics, Elsevier, vol. 3(3), pages 210-221.
    18. Yue, Zenghui & Xu, Haiyun & Yuan, Guoting & Pang, Hongshen, 2019. "Modeling study of knowledge diffusion in scientific collaboration networks based on differential dynamics: A case study in graphene field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 375-391.
    19. Seung-Pyo Jun, 2012. "An empirical study of users’ hype cycle based on search traffic: the case study on hybrid cars," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(1), pages 81-99, April.
    20. Mogues, Tewodaj & Billings, Lucy, 2019. "The making of public investments: The role of champions, co-ordination, and characteristics of nutrition programmes in Mozambique," Food Policy, Elsevier, vol. 83(C), pages 29-38.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0270131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.