IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0266838.html
   My bibliography  Save this article

A study of forecasting tennis matches via the Glicko model

Author

Listed:
  • Jack C Yue
  • Elizabeth P Chou
  • Ming-Hui Hsieh
  • Li-Chen Hsiao

Abstract

Tennis is a popular sport, and professional tennis matches are probably the most watched games globally. Many studies consider statistical or machine learning models to predict the results of professional tennis matches. In this study, we propose a statistical approach for predicting the match outcomes of Grand Slam tournaments, in addition to applying exploratory data analysis (EDA) to explore variables related to match results. The proposed approach introduces new variables via the Glicko rating model, a Bayesian method commonly used in professional chess. We use EDA tools to determine important variables and apply classification models (e.g., logistic regression, support vector machine, neural network and light gradient boosting machine) to evaluate the classification results through cross-validation. The empirical study is based on men’s and women’s single matches of Grand Slam tournaments (2000–2019). Our analysis results show that professional tennis ranking is the most important variable and that the accuracy of the proposed Glicko model is slightly higher than that of other models.

Suggested Citation

  • Jack C Yue & Elizabeth P Chou & Ming-Hui Hsieh & Li-Chen Hsiao, 2022. "A study of forecasting tennis matches via the Glicko model," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-12, April.
  • Handle: RePEc:plo:pone00:0266838
    DOI: 10.1371/journal.pone.0266838
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0266838
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0266838&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0266838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vincenzo Candila & Lucio Palazzo, 2020. "Neural Networks and Betting Strategies for Tennis," Risks, MDPI, vol. 8(3), pages 1-19, June.
    2. P. Gorgi & S. J. Koopman & R. Lit, 2019. "The analysis and forecasting of tennis matches by using a high dimensional dynamic model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1393-1409, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angelini, Giovanni & Candila, Vincenzo & De Angelis, Luca, 2022. "Weighted Elo rating for tennis match predictions," European Journal of Operational Research, Elsevier, vol. 297(1), pages 120-132.
    2. Alberto Arcagni & Vincenzo Candila & Rosanna Grassi, 2023. "A new model for predicting the winner in tennis based on the eigenvector centrality," Annals of Operations Research, Springer, vol. 325(1), pages 615-632, June.
    3. Philip W. S. Newall & Dominic Cortis, 2021. "Are Sports Bettors Biased toward Longshots, Favorites, or Both? A Literature Review," Risks, MDPI, vol. 9(1), pages 1-9, January.
    4. Jun Woo Kim & Mar Magnusen & Seunghoon Jeong, 2023. "March Madness prediction: Different machine learning approaches with non‐box score statistics," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(4), pages 2223-2236, June.
    5. Petra Tomanová & Vladimír Holý, 2021. "Clustering of arrivals in queueing systems: autoregressive conditional duration approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 859-874, September.
    6. Vladimír Holý & Jan Zouhar, 2022. "Modelling time‐varying rankings with autoregressive and score‐driven dynamics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1427-1450, November.
    7. Andrea Guizzardi & Luca Vincenzo Ballestra & Enzo D’Innocenzo, 2024. "Reverse engineering the last-minute on-line pricing practices: an application to hotels," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 943-971, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0266838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.