IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0251714.html
   My bibliography  Save this article

Braking performance oriented multi–objective optimal design of electro–mechanical brake parameters

Author

Listed:
  • Tong Wu
  • Jing Li
  • Xuan Qin

Abstract

Excellent braking performance is the premise of safe driving, and improve the braking performance by upgrading structures and optimizing parameters of braking systems has become the pursuit of engineers. With the development of autonomous driving and intelligent connected vehicle, new structural schemes such as electro–mechanical brakes (EMBs) have become the future of vehicle braking systems. Meanwhile, many scholars have dedicated to the research on the parameters optimization of braking systems. While, most of the studies focus on reducing the brake size and weight, improving the brake responses by optimizing the parameters, almost not involving the braking performance, and the optimization variables are relatively single. On these foundations, a multi–objective optimal design of EMB parameters is proposed to enhance the vehicle’s braking performance. Its objectives and constraints were defined based on relevant standards and regulations. Subsequently, the decision variables were set, and optimal math model was established. Furthermore, the co–simulation platform was constructed, and the optimal design and simulation analyses factoring in the crucial structural and control parameters were performed. The results confirmed that the maximum braking pressure response time of the EMB is decreased by approximately 0.3 s, the stopping distance (SD) of 90 km/h–0 is shortened by about 3.44 m. Moreover, the mean fully developed deceleration (MFDD) is increased by 0.002 g, and the lateral displacement of the body (LD) is reduced by about 0.037 m. Hence, the vehicle braking performance is improved.

Suggested Citation

  • Tong Wu & Jing Li & Xuan Qin, 2021. "Braking performance oriented multi–objective optimal design of electro–mechanical brake parameters," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-31, May.
  • Handle: RePEc:plo:pone00:0251714
    DOI: 10.1371/journal.pone.0251714
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251714
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0251714&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0251714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing Li & Tong Wu & Tianxin Fan & Yan He & Lingshuai Meng & Zuoyue Han, 2020. "Clamping force control of electro–mechanical brakes based on driver intentions," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-30, September.
    2. Changran He & Guoye Wang & Zhangpeng Gong & Zhichao Xing & Dongxin Xu, 2018. "A Control Algorithm for the Novel Regenerative–Mechanical Coupled Brake System with by-Wire Based on Multidisciplinary Design Optimization for an Electric Vehicle," Energies, MDPI, vol. 11(9), pages 1-18, September.
    3. He, Hongwen & Wang, Chen & Jia, Hui & Cui, Xing, 2020. "An intelligent braking system composed single-pedal and multi-objective optimization neural network braking control strategies for electric vehicle," Applied Energy, Elsevier, vol. 259(C).
    4. Ho-Jin Kim & Hyung-Seok Park & Jang-Mok Kim, 2020. "Expansion of Operating Speed Range of High-Speed BLDC Motor Using Hybrid PWM Switching Method Considering Dead Time," Energies, MDPI, vol. 13(19), pages 1-13, October.
    5. Bo Long & Shin Teak Lim & Ji Hyoung Ryu & Kil To Chong, 2013. "Energy-Regenerative Braking Control of Electric Vehicles Using Three-Phase Brushless Direct-Current Motors," Energies, MDPI, vol. 7(1), pages 1-16, December.
    6. Yang Yang & Qiang He & Yongzheng Chen & Chunyun Fu, 2020. "Efficiency Optimization and Control Strategy of Regenerative Braking System with Dual Motor," Energies, MDPI, vol. 13(3), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Junjiang & Yang, Yang & Hu, Minghui & Yang, Zhong & Fu, Chunyun, 2021. "Longitudinal–vertical comprehensive control for four-wheel drive pure electric vehicle considering energy recovery and ride comfort," Energy, Elsevier, vol. 236(C).
    2. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    3. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    4. Xinyu Zhao & Lu Xiong & Guirong Zhuo & Wei Tian & Jing Li & Qiang Shu & Xuanbai Zhao & Guodong Xu, 2024. "A Review of One-Box Electro-Hydraulic Braking System: Architecture, Control, and Application," Sustainability, MDPI, vol. 16(3), pages 1-31, January.
    5. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
    6. Zoltán Pusztai & Péter Kőrös & Ferenc Szauter & Ferenc Friedler, 2023. "Implementation of Optimized Regenerative Braking in Energy Efficient Driving Strategies," Energies, MDPI, vol. 16(6), pages 1-20, March.
    7. Fengrui Xu & Xuelin Liang & Mengqiao Chen & Wensheng Liu, 2022. "Robust Self-Learning PID Control of an Aircraft Anti-Skid Braking System," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    8. Dong, Haoxuan & Zhuang, Weichao & Chen, Boli & Wang, Yan & Lu, Yanbo & Liu, Ying & Xu, Liwei & Yin, Guodong, 2022. "A comparative study of energy-efficient driving strategy for connected internal combustion engine and electric vehicles at signalized intersections," Applied Energy, Elsevier, vol. 310(C).
    9. Zhang, Yuanjian & Huang, Yanjun & Chen, Haibo & Na, Xiaoxiang & Chen, Zheng & Liu, Yonggang, 2021. "Driving behavior oriented torque demand regulation for electric vehicles with single pedal driving," Energy, Elsevier, vol. 228(C).
    10. Yang, Jian & Liu, Bo & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin, 2023. "Multi-parameter controlled mechatronics-electro-hydraulic power coupling electric vehicle based on active energy regulation," Energy, Elsevier, vol. 263(PC).
    11. Valery Vodovozov & Andrei Aksjonov & Eduard Petlenkov & Zoja Raud, 2021. "Neural Network-Based Model Reference Control of Braking Electric Vehicles," Energies, MDPI, vol. 14(9), pages 1-22, April.
    12. Li, Shicheng & Xu, Lin & Du, Xiaofang & Wang, Nian & Lin, Feng & Abdelkareem, Mohamed A.A., 2023. "Combined single-pedal and low adhesion control systems for enhanced energy regeneration in electric vehicles: Modeling, simulation, and on-field test," Energy, Elsevier, vol. 269(C).
    13. Wei, Hongqian & Ai, Qiang & Zhao, Wenqiang & Zhang, Youtong, 2022. "Modelling and experimental validation of an EV torque distribution strategy towards active safety and energy efficiency," Energy, Elsevier, vol. 239(PA).
    14. Xiaoping Li & Junming Zhou & Wei Guan & Feng Jiang & Guangming Xie & Chunfeng Wang & Weiguang Zheng & Zhijie Fang, 2023. "Optimization of Brake Feedback Efficiency for Small Pure Electric Vehicles Based on Multiple Constraints," Energies, MDPI, vol. 16(18), pages 1-20, September.
    15. Krzysztof Kolano & Artur Jan Moradewicz & Bartosz Drzymała & Jakub Gęca, 2022. "Influence of the Placement Accuracy of the Brushless DC Motor Hall Sensor on Inverter Transistor Losses," Energies, MDPI, vol. 15(5), pages 1-13, March.
    16. Cong Geng & Dawen Ning & Linfu Guo & Qicheng Xue & Shujian Mei, 2021. "Simulation Research on Regenerative Braking Control Strategy of Hybrid Electric Vehicle," Energies, MDPI, vol. 14(8), pages 1-19, April.
    17. Mustapha Al Sakka & Thomas Geury & Mohamed El Baghdadi & Miguel Dhaens & Monzer Al Sakka & Omar Hegazy, 2022. "Review of Fault Tolerant Multi-Motor Drive Topologies for Automotive Applications," Energies, MDPI, vol. 15(15), pages 1-24, July.
    18. Carmen Raga & Andres Barrado & Henry Miniguano & Antonio Lazaro & Isabel Quesada & Alberto Martin-Lozano, 2018. "Analysis and Sizing of Power Distribution Architectures Applied to Fuel Cell Based Vehicles," Energies, MDPI, vol. 11(10), pages 1-30, September.
    19. Valery Vodovozov & Zoja Raud & Eduard Petlenkov, 2021. "Review on Braking Energy Management in Electric Vehicles," Energies, MDPI, vol. 14(15), pages 1-26, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0251714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.