IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0248986.html
   My bibliography  Save this article

Analysis of English free association network reveals mechanisms of efficient solution of Remote Association Tests

Author

Listed:
  • Olga Valba
  • Alexander Gorsky
  • Sergei Nechaev
  • Mikhail Tamm

Abstract

We study correlations between the structure and properties of a free association network of the English language, and solutions of psycholinguistic Remote Association Tests (RATs). We show that average hardness of individual RATs is largely determined by relative positions of test words (stimuli and response) on the free association network. We argue that the solution of RATs can be interpreted as a first passage search problem on a network whose vertices are words and links are associations between words. We propose different heuristic search algorithms and demonstrate that in “easily-solving” RATs (those that are solved in 15 seconds by more than 64% subjects) the solution is governed by “strong” network links (i.e. strong associations) directly connecting stimuli and response, and thus the efficient strategy consist in activating such strong links. In turn, the most efficient mechanism of solving medium and hard RATs consists of preferentially following sequence of “moderately weak” associations.

Suggested Citation

  • Olga Valba & Alexander Gorsky & Sergei Nechaev & Mikhail Tamm, 2021. "Analysis of English free association network reveals mechanisms of efficient solution of Remote Association Tests," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-15, April.
  • Handle: RePEc:plo:pone00:0248986
    DOI: 10.1371/journal.pone.0248986
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248986
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0248986&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0248986?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fragkiskos Papadopoulos & Maksim Kitsak & M. Ángeles Serrano & Marián Boguñá & Dmitri Krioukov, 2012. "Popularity versus similarity in growing networks," Nature, Nature, vol. 489(7417), pages 537-540, September.
    2. Jeff Alstott & Ed Bullmore & Dietmar Plenz, 2014. "powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    3. Cynthia S. Q. Siew & Dirk U. Wulff & Nicole M. Beckage & Yoed N. Kenett, 2019. "Cognitive Network Science: A Review of Research on Cognition through the Lens of Network Representations, Processes, and Dynamics," Complexity, Hindawi, vol. 2019, pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph, Simmi Marina & Citraro, Salvatore & Morini, Virginia & Rossetti, Giulio & Stella, Massimo, 2023. "Cognitive network neighborhoods quantify feelings expressed in suicide notes and Reddit mental health communities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geeraert, Joke & Rocha, Luis E.C. & Vandeviver, Christophe, 2024. "The impact of violent behavior on co-offender selection: Evidence of behavioral homophily," Journal of Criminal Justice, Elsevier, vol. 94(C).
    2. Jascha-Alexander Koch & Michael Siering, 2019. "The recipe of successful crowdfunding campaigns," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(4), pages 661-679, December.
    3. Sumeet Kumar & Binxuan Huang & Ramon Alfonso Villa Cox & Kathleen M. Carley, 2021. "An anatomical comparison of fake-news and trusted-news sharing pattern on Twitter," Computational and Mathematical Organization Theory, Springer, vol. 27(2), pages 109-133, June.
    4. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    5. Pawanesh Pawanesh & Charu Sharma & Niteesh Sahni, 2025. "Analyzing Communicability and Connectivity in the Indian Stock Market During Crises," Papers 2502.08242, arXiv.org, revised Sep 2025.
    6. Shu Takahashi & Kento Yamamoto & Shumpei Kobayashi & Ryoma Kondo & Ryohei Hisano, 2024. "Dynamic Link and Flow Prediction in Bank Transfer Networks," Papers 2409.08718, arXiv.org, revised Oct 2024.
    7. Li, Heyang & Wu, Meijun & Wang, Yougui & Zeng, An, 2022. "Bibliographic coupling networks reveal the advantage of diversification in scientific projects," Journal of Informetrics, Elsevier, vol. 16(3).
    8. Jiaqi Liang & Linjing Li & Daniel Zeng, 2018. "Evolutionary dynamics of cryptocurrency transaction networks: An empirical study," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-18, August.
    9. Katahira, Kei & Chen, Yu & Akiyama, Eizo, 2021. "Self-organized Speculation Game for the spontaneous emergence of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    10. Wang, Xuhui & Wu, Jiao & Yang, Zheng & Xu, Kesheng & Wang, Zhengling & Zheng, Muhua, 2024. "The correlation between independent edge and triangle degrees promote the explosive information spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    11. Yu Zhang & Claudio Tessone, 2024. "Bitcoin Transaction Behavior Modeling Based on Balance Data," Papers 2409.10407, arXiv.org.
    12. Juan Miguel Carrascosa & Ruben Cuevas & Roberto Gonzalez & Arturo Azcorra & David Garcia, 2015. "Quantifying the Economic and Cultural Biases of Social Media through Trending Topics," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-14, July.
    13. Martin Keller-Ressel & Stephanie Nargang, 2020. "The hyperbolic geometry of financial networks," Papers 2005.00399, arXiv.org, revised May 2020.
    14. Weihua Yang & David Rideout, 2020. "High Dimensional Hyperbolic Geometry of Complex Networks," Mathematics, MDPI, vol. 8(11), pages 1-39, October.
    15. Wang, Zuxi & Li, Qingguang & Jin, Fengdong & Xiong, Wei & Wu, Yao, 2016. "Hyperbolic mapping of complex networks based on community information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 104-119.
    16. Bernat Salbanya & Carlos Carrasco-Farré & Jordi Nin, 2024. "Structure matters: Assessing the statistical significance of network topologies," PLOS ONE, Public Library of Science, vol. 19(10), pages 1-28, October.
    17. Maksim Kitsak & Alexander Ganin & Ahmed Elmokashfi & Hongzhu Cui & Daniel A. Eisenberg & David L. Alderson & Dmitry Korkin & Igor Linkov, 2023. "Finding shortest and nearly shortest path nodes in large substantially incomplete networks by hyperbolic mapping," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Zhichao Fang & Jonathan Dudek & Rodrigo Costas, 2020. "The stability of Twitter metrics: A study on unavailable Twitter mentions of scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(12), pages 1455-1469, December.
    19. Iannello, Ludovico & Tonelli, Fabrizio & Cremisi, Federico & Calcagnile, Lucio Maria & Mannella, Riccardo & Amato, Giuseppe & Di Garbo, Angelo, 2025. "Criticality in neural cultures: Insights into memory and connectivity in entorhinal-hippocampal networks," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    20. Stefan Claus & Massimo Stella, 2022. "Natural Language Processing and Cognitive Networks Identify UK Insurers’ Trends in Investor Day Transcripts," Future Internet, MDPI, vol. 14(10), pages 1-18, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0248986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.