IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0231749.html
   My bibliography  Save this article

Nonlinear robust integral backstepping based MPPT control for stand-alone photovoltaic system

Author

Listed:
  • Kamran Ali
  • Qudrat Khan
  • Shafaat Ullah
  • Ilyas Khan
  • Laiq Khan

Abstract

PV (Photovoltaic) cells have nonlinear current-voltage (I − V) and power-voltage (P − V) characteristics with a distinct maximum power point (MPP) that entirely depends on the ambient meteorological conditions (i.e. solar irradiance and temperature). Hence, to continuously extract and deliver the maximum possible power from the PV system, under given meteorological conditions, the maximum power point tracking (MPPT) control strategy needs to be formulated that continuously operates the PV system at its MPP. To achieve this goal, a hybrid nonlinear, very fast and efficient MPPT control strategy, based on the robust integral backstepping (RIB) control, is formulated in this research article. The simulation testbed comprises a standalone PV array, a non-inverting buck-boost (NIBB) DC-DC power converter, a purely resistive and a dynamic load (sound system). The proposed MPPT control scheme consists of two loops, where the first loop generates the real-time offline reference peak power voltage through an adaptive neuro-fuzzy inference system (ANFIS) network, which is then utilized in the second loop as a set-point value for generating a control signal and then forcing the PV system to be operated at this set-point by continuously adjusting the duty ratio of the power converter. This control strategy exhibits no overshoot, fast convergence, good transient response, fast rising and settling times and minimum output tracking error. The MATLAB/Simulink platform is used to test the performance of the proposed MPPT strategy against varying meteorological conditions, plant current and voltage faults and plant parametric uncertainties. To validate the superiority of the proposed control strategy, a comparative analysis of the proposed control strategy is presented with the nonlinear backstepping (B), integral backstepping controller (IB) and conventional PID and P&O based MPPT controllers.

Suggested Citation

  • Kamran Ali & Qudrat Khan & Shafaat Ullah & Ilyas Khan & Laiq Khan, 2020. "Nonlinear robust integral backstepping based MPPT control for stand-alone photovoltaic system," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-31, May.
  • Handle: RePEc:plo:pone00:0231749
    DOI: 10.1371/journal.pone.0231749
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231749
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0231749&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0231749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ishaque, Kashif & Salam, Zainal & Lauss, George, 2014. "The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions," Applied Energy, Elsevier, vol. 119(C), pages 228-236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:zib:zjmerd:4jmerd2018-116-121 is not listed on IDEAS
    2. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    3. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    4. Canras Batunlu & Mohamad Alrweq & Alhussein Albarbar, 2016. "Effects of Power Tracking Algorithms on Lifetime of Power Electronic Devices Used in Solar Systems," Energies, MDPI, vol. 9(11), pages 1-23, October.
    5. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    6. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    7. Md Ohirul Qays & Yonis Buswig & Md Liton Hossain & Ahmed Abu-Siada, 2020. "Active Charge Balancing Strategy Using the State of Charge Estimation Technique for a PV-Battery Hybrid System," Energies, MDPI, vol. 13(13), pages 1-16, July.
    8. Aharon, Ilan & Shmilovitz, Doron & Kuperman, Alon, 2017. "Multimode power processing interface for fuel cell range extender in battery powered vehicle," Applied Energy, Elsevier, vol. 204(C), pages 572-581.
    9. Md Ismail Hossain & Md Shafiullah & Fahad A. Al-Sulaiman & Mohammad A. Abido, 2022. "Comprehensive Analysis of PV and Wind Energy Integration into MMC-HVDC Transmission Network," Sustainability, MDPI, vol. 15(1), pages 1-36, December.
    10. Vavilapalli, Sridhar & Umashankar, S. & Sanjeevikumar, P. & Ramachandaramurthy, Vigna K. & Mihet-Popa, Lucian & Fedák, Viliam, 2018. "Three-stage control architecture for cascaded H-Bridge inverters in large-scale PV systems – Real time simulation validation," Applied Energy, Elsevier, vol. 229(C), pages 1111-1127.
    11. G, Dileep. & Singh, S.N., 2017. "Selection of non-isolated DC-DC converters for solar photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1230-1247.
    12. Youssef, Ayman & El-Telbany, Mohammed & Zekry, Abdelhalim, 2017. "The role of artificial intelligence in photo-voltaic systems design and control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 72-79.
    13. Alexandro Ortiz & Efrain Mendez & Israel Macias & Arturo Molina, 2022. "Earthquake Algorithm-Based Voltage Referenced MPPT Implementation through a Standardized Validation Frame," Energies, MDPI, vol. 15(23), pages 1-24, November.
    14. Sridhar, V. & Umashankar, S., 2017. "A comprehensive review on CHB MLI based PV inverter and feasibility study of CHB MLI based PV-STATCOM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 138-156.
    15. Li, Shaowu, 2016. "Linear equivalent models at the maximum power point based on variable weather parameters for photovoltaic cell," Applied Energy, Elsevier, vol. 182(C), pages 94-104.
    16. Belkaid, A. & Colak, I. & Isik, O., 2016. "Photovoltaic maximum power point tracking under fast varying of solar radiation," Applied Energy, Elsevier, vol. 179(C), pages 523-530.
    17. Victor Arturo Martinez Lopez & Ugnė Žindžiūtė & Hesan Ziar & Miro Zeman & Olindo Isabella, 2022. "Study on the Effect of Irradiance Variability on the Efficiency of the Perturb-and-Observe Maximum Power Point Tracking Algorithm," Energies, MDPI, vol. 15(20), pages 1-12, October.
    18. Marco Balato & Carlo Petrarca, 2020. "The Impact of Reconfiguration on the Energy Performance of the Distributed Maximum Power Point Tracking Approach in PV Plants," Energies, MDPI, vol. 13(6), pages 1-19, March.
    19. Ahmed Ismail M. Ali & Zuhair Muhammed Alaas & Mahmoud A. Sayed & Abdulaziz Almalaq & Anouar Farah & Mohamed A. Mohamed, 2022. "An Efficient MPPT Technique-Based Single-Stage Incremental Conductance for Integrated PV Systems Considering Flyback Central-Type PV Inverter," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    20. Noureddine Bouarroudj & Yehya Houam & Abdelhamid Djari & Vicente Feliu-Batlle & Abdelkader Lakhdari & Boualam Benlahbib, 2023. "A Linear Quadratic Integral Controller for PV-Module Voltage Regulation for the Purpose of Enhancing the Classical Incremental Conductance Algorithm," Energies, MDPI, vol. 16(11), pages 1-17, June.
    21. Ahmad M. A. Malkawi & Abdallah Odat & Ahmad Bashaireh, 2022. "A Novel PV Maximum Power Point Tracking Based on Solar Irradiance and Circuit Parameters Estimation," Sustainability, MDPI, vol. 14(13), pages 1-14, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0231749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.