IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0229330.html
   My bibliography  Save this article

StructuRly: A novel shiny app to produce comprehensive, detailed and interactive plots for population genetic analysis

Author

Listed:
  • Nicola G Criscuolo
  • Claudia Angelini

Abstract

Population genetics focuses on the analysis of genetic differences within and between-group of individuals and the inference of the populations’ structure. These analyses are usually carried out using Bayesian clustering or maximum likelihood estimation algorithms that assign individuals to a given population depending on specific genetic patterns. Although several tools were developed to perform population genetics analysis, their standard graphical outputs may not be sufficiently informative for users lacking interactivity and complete information. StructuRly aims to resolve this problem by offering a complete environment for population analysis. In particular, StructuRly combines the statistical power of the R language with the friendly interfaces implemented using the shiny libraries to provide a novel tool for performing population clustering, evaluating several genetic indexes, and comparing results. Moreover, graphical representations are interactive and can be easily personalized. StructuRly is available either as R package on GitHub, with detailed information for its installation and use and as shinyapps.io servers for those users who are not familiar with R and the RStudio IDE. The application has been tested on Linux, macOS and Windows operative systems and can be launched as a shiny app in every web browser.

Suggested Citation

  • Nicola G Criscuolo & Claudia Angelini, 2020. "StructuRly: A novel shiny app to produce comprehensive, detailed and interactive plots for population genetic analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-12, February.
  • Handle: RePEc:plo:pone00:0229330
    DOI: 10.1371/journal.pone.0229330
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229330
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0229330&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0229330?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    2. Laura D Hughes & Scott A Lewis & Michael E Hughes, 2017. "ExpressionDB: An open source platform for distributing genome-scale datasets," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-13, November.
    3. Bohdan B Khomtchouk & James R Hennessy & Claes Wahlestedt, 2017. "shinyheatmap: Ultra fast low memory heatmap web interface for big data genomics," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed Mohi-Ud-Din & Md. Alamgir Hossain & Md. Motiar Rohman & Md. Nesar Uddin & Md. Sabibul Haque & Eldessoky S. Dessoky & Mohammed Alqurashi & Salman Aloufi, 2022. "Assessment of Genetic Diversity of Bread Wheat Genotypes for Drought Tolerance Using Canopy Reflectance-Based Phenotyping and SSR Marker-Based Genotyping," Sustainability, MDPI, vol. 14(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    2. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    3. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    4. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    5. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    6. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    7. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    8. A van Giessen & K G M Moons & G A de Wit & W M M Verschuren & J M A Boer & H Koffijberg, 2015. "Tailoring the Implementation of New Biomarkers Based on Their Added Predictive Value in Subgroups of Individuals," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-14, January.
    9. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    10. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
    11. Elvira Pelle & Roberta Pappadà, 2021. "A clustering procedure for mixed-type data to explore ego network typologies: an application to elderly people living alone in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1507-1533, December.
    12. Renato Cordeiro Amorim, 2016. "A Survey on Feature Weighting Based K-Means Algorithms," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 210-242, July.
    13. Tom Wilderjans & Eva Ceulemans & Iven Mechelen, 2008. "The CHIC Model: A Global Model for Coupled Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 729-751, December.
    14. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    15. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Jeffrey Andrews & Paul McNicholas, 2014. "Variable Selection for Clustering and Classification," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 136-153, July.
    17. Marek Obrębalski & Marek Walesiak, 2015. "Functional structure of Polish regions in the period 2004-2013 – measurement via HHI Index, Florence’s coefficient of localization and cluster analysis," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(2), pages 223-242, June.
    18. Luca Scaffidi Domianello & Giampiero M. Gallo & Edoardo Otranto, 2024. "Smooth and Abrupt Dynamics in Financial Volatility: The MS‐MEM‐MIDAS," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(1), pages 21-43, February.
    19. Paul Bastide & Mahendra Mariadassou & Stéphane Robin, 2017. "Detection of adaptive shifts on phylogenies by using shifted stochastic processes on a tree," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1067-1093, September.
    20. Douglas L. Steinley & M. J. Brusco, 2019. "Using an Iterative Reallocation Partitioning Algorithm to Verify Test Multidimensionality," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 397-413, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0229330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.