IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0223249.html
   My bibliography  Save this article

Coastal proximity of populations in 22 Pacific Island Countries and Territories

Author

Listed:
  • Neil L Andrew
  • Phil Bright
  • Luis de la Rua
  • Shwu Jiau Teoh
  • Mathew Vickers

Abstract

The coastal zones of Small Island States are hotspots of human habitation and economic endeavour. In the Pacific region, as elsewhere, there are large gaps in understandings of the exposure and vulnerability of people in coastal zones. The 22 Pacific Countries and Territories (PICTs) are poorly represented in global analyses of vulnerability to seaward risks. We combine several data sources to estimate populations to zones 1, 5 and 10 km from the coastline in each of the PICTs. Regional patterns in the proximity of Pacific people to the coast are dominated by Papua New Guinea. Overall, ca. half the population of the Pacific resides within 10 km of the coast but this jumps to 97% when Papua New Guinea is excluded. A quarter of Pacific people live within 1 km of the coast, but without PNG this increases to slightly more than half. Excluding PNG, 90% of Pacific Islanders live within 5 km of the coast. All of the population in the coral atoll nations of Tokelau and Tuvalu live within a km of the ocean. Results using two global datasets, the SEDAC-CIESIN Gridded Population of the World v4 (GPWv4) and the Oak Ridge National Laboratory Landscan differed: Landscan under-dispersed population, overestimating numbers in urban centres and underestimating population in rural areas and GPWv4 over-dispersed the population. In addition to errors introduced by the allocation models of the two methods, errors were introduced as artefacts of allocating households to 1 km x 1 km grid cell data (30 arc–seconds) to polygons. The limited utility of LandScan and GPWv4 in advancing this analysis may be overcome with more spatially resolved census data and the inclusion of elevation above sea level as an important dimension of vulnerability.

Suggested Citation

  • Neil L Andrew & Phil Bright & Luis de la Rua & Shwu Jiau Teoh & Mathew Vickers, 2019. "Coastal proximity of populations in 22 Pacific Island Countries and Territories," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-15, September.
  • Handle: RePEc:plo:pone00:0223249
    DOI: 10.1371/journal.pone.0223249
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223249
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0223249&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0223249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Barbara Neumann & Athanasios T Vafeidis & Juliane Zimmermann & Robert J Nicholls, 2015. "Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-34, March.
    2. N. A. Wardrop & W. C. Jochem & T. J. Bird & H. R. Chamberlain & D. Clarke & D. Kerr & L. Bengtsson & S. Juran & V. Seaman & A. J. Tatem, 2018. "Spatially disaggregated population estimates in the absence of national population and housing census data," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(14), pages 3529-3537, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan-Ludolf Merkens & Athanasios T. Vafeidis, 2018. "Using Information on Settlement Patterns to Improve the Spatial Distribution of Population in Coastal Impact Assessments," Sustainability, MDPI, vol. 10(9), pages 1-19, September.
    2. Sem J. Duijndam & W. J. Wouter Botzen & Liselotte C. Hagedoorn & Philip Bubeck & Toon Haer & My Pham & Jeroen C. J. H. Aerts, 2023. "Drivers of migration intentions in coastal Vietnam under increased flood risk from sea level rise," Climatic Change, Springer, vol. 176(2), pages 1-22, February.
    3. Philip Antwi-Agyei & Frank Baffour-Ata & Sarah Koomson & Nana Kwame Kyeretwie & Nana Barimah Nti & Afia Oforiwaa Owusu & Fukaiha Abdul Razak, 2023. "Drivers and coping mechanisms for floods: experiences of residents in urban Kumasi, Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2477-2500, March.
    4. Anirban Mukhopadhyay & Sugata Hazra & Debasish Mitra & C. Hutton & Abhra Chanda & Sandip Mukherjee, 2016. "Characterizing the multi-risk with respect to plausible natural hazards in the Balasore coast, Odisha, India: a multi-criteria analysis (MCA) appraisal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1495-1513, February.
    5. Islam, Md. Mofakkarul & Sarker, Md. Asaduzzaman & Al Mamun, Md. Abdullah & Mamun-ur-Rashid, Md. & Roy, Debashis, 2021. "Stepping Up versus Stepping Out: On the outcomes and drivers of two alternative climate change adaptation strategies of smallholders," World Development, Elsevier, vol. 148(C).
    6. Ke Wang & Yongsheng Yang & Genserik Reniers & Quanyi Huang, 2021. "A study into the spatiotemporal distribution of typhoon storm surge disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1237-1256, August.
    7. Domingues, Rita & Costas, Susana & Jesus, Saul & Ferreira, Óscar, 2017. "SENSE OF PLACE, RISK PERCEPTIONS AND PREPAREDNESS OF A COASTAL POPULATION AT RISK (Faro Beach, Portugal): A qualitative content analysis," Journal of Tourism, Sustainability and Well-being, Cinturs - Research Centre for Tourism, Sustainability and Well-being, University of Algarve, vol. 5(3), pages 163-175.
    8. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
    9. Zhibin Yang & Robert Stachler & Joshua S. Heyne, 2020. "Orthogonal Reference Surrogate Fuels for Operability Testing," Energies, MDPI, vol. 13(8), pages 1-13, April.
    10. Rifat, Shaikh Abdullah Al & Liu, Weibo, 2022. "Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area," Land Use Policy, Elsevier, vol. 114(C).
    11. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).
    12. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    13. Ryota Nakamura & Martin Mäll & Tomoya Shibayama, 2019. "Street-scale storm surge load impact assessment using fine-resolution numerical modelling: a case study from Nemuro, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 391-422, October.
    14. Gelian Song & Meijuan Xia & Dahai Zhang, 2023. "Deep Reinforcement Learning for Risk and Disaster Management in Energy-Efficient Marine Ranching," Energies, MDPI, vol. 16(16), pages 1-20, August.
    15. Maria Fabrizia Clemente, 2022. "The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    16. Yılmaz, Merve & Terzi, Fatih, 2021. "Measuring the patterns of urban spatial growth of coastal cities in developing countries by geospatial metrics," Land Use Policy, Elsevier, vol. 107(C).
    17. Fei Huo & Li Xu & Yanping Li & James S. Famiglietti & Zhenhua Li & Yuya Kajikawa & Fei Chen, 2021. "Using big data analytics to synthesize research domains and identify emerging fields in urban climatology," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    18. Katrin Millock & Cees Withagen, 2021. "Climate and Migration," World Scientific Book Chapters, in: Anil Markandya & Dirk Rübbelke (ed.), CLIMATE AND DEVELOPMENT, chapter 10, pages 309-341, World Scientific Publishing Co. Pte. Ltd..
    19. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    20. Paul A. Sandifer & Alexander S. Braud & Landon C. Knapp & Judith Taylor, 2021. "Is Living in a U.S. Coastal City Good for One’s Health?," IJERPH, MDPI, vol. 18(16), pages 1-24, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0223249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.