IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0213221.html
   My bibliography  Save this article

A meta-analysis of multiple matched aCGH/expression cancer datasets reveals regulatory relationships and pathway enrichment of potential oncogenes

Author

Listed:
  • Richard Newton
  • Lorenz Wernisch

Abstract

The copy numbers of genes in cancer samples are often highly disrupted and form a natural amplification/deletion experiment encompassing multiple genes. Matched array comparative genomics and transcriptomics datasets from such samples can be used to predict inter-chromosomal gene regulatory relationships. Previously we published the database METAMATCHED, comprising the results from such an analysis of a large number of publically available cancer datasets. Here we investigate genes in the database which are unusual in that their copy number exhibits consistent heterogeneous disruption in a high proportion of the cancer datasets. We assess the potential relevance of these genes to the pathology of the cancer samples, in light of their predicted regulatory relationships and enriched biological pathways. A network-based method was used to identify enriched pathways from the genes’ inferred targets. The analysis predicts both known and new regulator-target interactions and pathway memberships. We examine examples in detail, in particular the gene POGZ, which is disrupted in many of the cancer datasets and has an unusually large number of predicted targets, from which the network analysis predicts membership of cancer related pathways. The results suggest close involvement in known cancer pathways of genes exhibiting consistent heterogeneous copy number disruption. Further experimental work would clarify their relevance to tumor biology. The results of the analysis presented in the database METAMATCHED, and included here as an R archive file, constitute a large number of predicted regulatory relationships and pathway memberships which we anticipate will be useful in informing such experiments.

Suggested Citation

  • Richard Newton & Lorenz Wernisch, 2019. "A meta-analysis of multiple matched aCGH/expression cancer datasets reveals regulatory relationships and pathway enrichment of potential oncogenes," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-28, July.
  • Handle: RePEc:plo:pone00:0213221
    DOI: 10.1371/journal.pone.0213221
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213221
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0213221&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0213221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rebecca A. Burrell & Nicholas McGranahan & Jiri Bartek & Charles Swanton, 2013. "The causes and consequences of genetic heterogeneity in cancer evolution," Nature, Nature, vol. 501(7467), pages 338-345, September.
    2. David Lindgren & Gottfrid Sjödahl & Martin Lauss & Johan Staaf & Gunilla Chebil & Kristina Lövgren & Sigurdur Gudjonsson & Fredrik Liedberg & Oliver Patschan & Wiking Månsson & Mårten Fernö & Mattias , 2012. "Integrated Genomic and Gene Expression Profiling Identifies Two Major Genomic Circuits in Urothelial Carcinoma," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-11, June.
    3. Richard Newton & Lorenz Wernisch, 2014. "A Meta-Analysis of Multiple Matched Copy Number and Transcriptomics Data Sets for Inferring Gene Regulatory Relationships," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-18, August.
    4. Brian J. O’Roak & Laura Vives & Santhosh Girirajan & Emre Karakoc & Niklas Krumm & Bradley P. Coe & Roie Levy & Arthur Ko & Choli Lee & Joshua D. Smith & Emily H. Turner & Ian B. Stanaway & Benjamin V, 2012. "Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations," Nature, Nature, vol. 485(7397), pages 246-250, May.
    5. Justin Cotney & Rebecca A. Muhle & Stephan J. Sanders & Li Liu & A. Jeremy Willsey & Wei Niu & Wenzhong Liu & Lambertus Klei & Jing Lei & Jun Yin & Steven K. Reilly & Andrew T. Tebbenkamp & Candace Bi, 2015. "The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment," Nature Communications, Nature, vol. 6(1), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Liu & Aniko Sabo & Benjamin M Neale & Uma Nagaswamy & Christine Stevens & Elaine Lim & Corneliu A Bodea & Donna Muzny & Jeffrey G Reid & Eric Banks & Hillary Coon & Mark DePristo & Huyen Dinh & Tim, 2013. "Analysis of Rare, Exonic Variation amongst Subjects with Autism Spectrum Disorders and Population Controls," PLOS Genetics, Public Library of Science, vol. 9(4), pages 1-15, April.
    2. Humberto Contreras-Trujillo & Jiya Eerdeng & Samir Akre & Du Jiang & Jorge Contreras & Basia Gala & Mary C. Vergel-Rodriguez & Yeachan Lee & Aparna Jorapur & Areen Andreasian & Lisa Harton & Charles S, 2021. "Deciphering intratumoral heterogeneity using integrated clonal tracking and single-cell transcriptome analyses," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Lianfeng Shan & Ming Li & Jianzhong Ma & Huidan Zhang, 2014. "PCR-Based Assays versus Direct Sequencing for Evaluating the Effect of KRAS Status on Anti-EGFR Treatment Response in Colorectal Cancer Patients: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-7, September.
    4. Matthew D Shirley & Laurence Frelin & José Soria López & Anne Jedlicka & Amanda Dziedzic & Michelle A Frank-Crawford & Wayne Silverman & Louis Hagopian & Jonathan Pevsner, 2016. "Copy Number Variants Associated with 14 Cases of Self-Injurious Behavior," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-16, March.
    5. Marion Porcherie & Nyan Linn & Anne Roué Le Gall & Marie-Florence Thomas & Emmanuelle Faure & Stéphane Rican & Jean Simos & Nicola Cantoreggi & Zoé Vaillant & Linda Cambon & Jean-Philippe Regnaux, 2021. "Relationship between Urban Green Spaces and Cancer: A Scoping Review," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    6. Shen Zhao & De-Pin Chen & Tong Fu & Jing-Cheng Yang & Ding Ma & Xiu-Zhi Zhu & Xiang-Xue Wang & Yi-Ping Jiao & Xi Jin & Yi Xiao & Wen-Xuan Xiao & Hu-Yunlong Zhang & Hong Lv & Anant Madabhushi & Wen-Tao, 2023. "Single-cell morphological and topological atlas reveals the ecosystem diversity of human breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    7. Li Chen & Peter L Choyke & Niya Wang & Robert Clarke & Zaver M Bhujwalla & Elizabeth M C Hillman & Ge Wang & Yue Wang, 2014. "Unsupervised Deconvolution of Dynamic Imaging Reveals Intratumor Vascular Heterogeneity and Repopulation Dynamics," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    8. Xiaolin Zhu & Raghavendra Padmanabhan & Brett Copeland & Joshua Bridgers & Zhong Ren & Sitharthan Kamalakaran & Ailbhe O'Driscoll-Collins & Samuel F Berkovic & Ingrid E Scheffer & Annapurna Poduri & D, 2017. "A case-control collapsing analysis identifies epilepsy genes implicated in trio sequencing studies focused on de novo mutations," PLOS Genetics, Public Library of Science, vol. 13(11), pages 1-12, November.
    9. Duncan Ingram & Guy-Bart Stan, 2023. "Modelling genetic stability in engineered cell populations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Gunnarsson, Einar Bjarki & Leder, Kevin & Foo, Jasmine, 2021. "Exact site frequency spectra of neutrally evolving tumors: A transition between power laws reveals a signature of cell viability," Theoretical Population Biology, Elsevier, vol. 142(C), pages 67-90.
    11. Jacob C Kimmel & Amy Y Chang & Andrew S Brack & Wallace F Marshall, 2018. "Inferring cell state by quantitative motility analysis reveals a dynamic state system and broken detailed balance," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-29, January.
    12. Srirangan Sampath & Shambu Bhat & Simone Gupta & Ashley O’Connor & Andrew B West & Dan E Arking & Aravinda Chakravarti, 2013. "Defining the Contribution of CNTNAP2 to Autism Susceptibility," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    13. Idan Menashe & Pascal Grange & Eric C Larsen & Sharmila Banerjee-Basu & Partha P Mitra, 2013. "Co-expression Profiling of Autism Genes in the Mouse Brain," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-10, July.
    14. Nick Henscheid & Eric Clarkson & Kyle J Myers & Harrison H Barrett, 2018. "Physiological random processes in precision cancer therapy," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-25, June.
    15. Megan E. Rowland & Yan Jiang & Sarfraz Shafiq & Alireza Ghahramani & Miguel A. Pena-Ortiz & Vanessa Dumeaux & Nathalie G. Bérubé, 2023. "Systemic and intrinsic functions of ATRX in glial cell fate and CNS myelination in male mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Tetsushi Sadakata & Yo Shinoda & Akira Sato & Hirotoshi Iguchi & Chiaki Ishii & Makoto Matsuo & Ryosuke Yamaga & Teiichi Furuichi, 2013. "Mouse Models of Mutations and Variations in Autism Spectrum Disorder-Associated Genes: Mice Expressing Caps2/Cadps2 Copy Number and Alternative Splicing Variants," IJERPH, MDPI, vol. 10(12), pages 1-19, November.
    17. Shiqian Ma & Daniel Johnson & Cody Ashby & Donghai Xiong & Carole L Cramer & Jason H Moore & Shuzhong Zhang & Xiuzhen Huang, 2015. "SPARCoC: A New Framework for Molecular Pattern Discovery and Cancer Gene Identification," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-19, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0213221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.