IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0200486.html
   My bibliography  Save this article

The genetic underpinnings of variation in ages at menarche and natural menopause among women from the multi-ethnic Population Architecture using Genomics and Epidemiology (PAGE) Study: A trans-ethnic meta-analysis

Author

Listed:
  • Lindsay Fernández-Rhodes
  • Jennifer R Malinowski
  • Yujie Wang
  • Ran Tao
  • Nathan Pankratz
  • Janina M Jeff
  • Sachiko Yoneyama
  • Cara L Carty
  • V Wendy Setiawan
  • Loic Le Marchand
  • Christopher Haiman
  • Steven Corbett
  • Ellen Demerath
  • Gerardo Heiss
  • Myron Gross
  • Petra Buzkova
  • Dana C Crawford
  • Steven C Hunt
  • D C Rao
  • Karen Schwander
  • Aravinda Chakravarti
  • Omri Gottesman
  • Noura S Abul-Husn
  • Erwin P Bottinger
  • Ruth J F Loos
  • Leslie J Raffel
  • Jie Yao
  • Xiuqing Guo
  • Suzette J Bielinski
  • Jerome I Rotter
  • Dhananjay Vaidya
  • Yii-Der Ida Chen
  • Sheila F Castañeda
  • Martha Daviglus
  • Robert Kaplan
  • Gregory A Talavera
  • Kelli K Ryckman
  • Ulrike Peters
  • Jose Luis Ambite
  • Steven Buyske
  • Lucia Hindorff
  • Charles Kooperberg
  • Tara Matise
  • Nora Franceschini
  • Kari E North

Abstract

Current knowledge of the genetic architecture of key reproductive events across the female life course is largely based on association studies of European descent women. The relevance of known loci for age at menarche (AAM) and age at natural menopause (ANM) in diverse populations remains unclear. We investigated 32 AAM and 14 ANM previously-identified loci and sought to identify novel loci in a trans-ethnic array-wide study of 196,483 SNPs on the MetaboChip (Illumina, Inc.). A total of 45,364 women of diverse ancestries (African, Hispanic/Latina, Asian American and American Indian/Alaskan Native) in the Population Architecture using Genomics and Epidemiology (PAGE) Study were included in cross-sectional analyses of AAM and ANM. Within each study we conducted a linear regression of SNP associations with self-reported or medical record-derived AAM or ANM (in years), adjusting for birth year, population stratification, and center/region, as appropriate, and meta-analyzed results across studies using multiple meta-analytic techniques. For both AAM and ANM, we observed more directionally consistent associations with the previously reported risk alleles than expected by chance (p-valuesbinomial≤0.01). Eight densely genotyped reproductive loci generalized significantly to at least one non-European population. We identified one trans-ethnic array-wide SNP association with AAM and two significant associations with ANM, which have not been described previously. Additionally, we observed evidence of independent secondary signals at three of six AAM trans-ethnic loci. Our findings support the transferability of reproductive trait loci discovered in European women to women of other race/ethnicities and indicate the presence of additional trans-ethnic associations both at both novel and established loci. These findings suggest the benefit of including diverse populations in future studies of the genetic architecture of female growth and development.

Suggested Citation

  • Lindsay Fernández-Rhodes & Jennifer R Malinowski & Yujie Wang & Ran Tao & Nathan Pankratz & Janina M Jeff & Sachiko Yoneyama & Cara L Carty & V Wendy Setiawan & Loic Le Marchand & Christopher Haiman &, 2018. "The genetic underpinnings of variation in ages at menarche and natural menopause among women from the multi-ethnic Population Architecture using Genomics and Epidemiology (PAGE) Study: A trans-ethnic ," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-21, July.
  • Handle: RePEc:plo:pone00:0200486
    DOI: 10.1371/journal.pone.0200486
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200486
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0200486&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0200486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Felix R. Day & Brendan Bulik-Sullivan & David A. Hinds & Hilary K. Finucane & Joanne M. Murabito & Joyce Y. Tung & Ken K. Ong & John R.B. Perry, 2015. "Shared genetic aetiology of puberty timing between sexes and with health-related outcomes," Nature Communications, Nature, vol. 6(1), pages 1-6, December.
    2. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    3. Chizu Tanikawa & Yukinori Okada & Atsushi Takahashi & Katsutoshi Oda & Naoyuki Kamatani & Michiaki Kubo & Yusuke Nakamura & Koichi Matsuda, 2013. "Genome Wide Association Study of Age at Menarche in the Japanese Population," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gyaneshwer Chaubey & Anurag Kadian & Saroj Bala & Vadlamudi Raghavendra Rao, 2015. "Genetic Affinity of the Bhil, Kol and Gond Mentioned in Epic Ramayana," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-11, June.
    2. Daniel Svensson & Matilda Rentoft & Anna M Dahlin & Emma Lundholm & Pall I Olason & Andreas Sjödin & Carin Nylander & Beatrice S Melin & Johan Trygg & Erik Johansson, 2020. "A whole-genome sequenced control population in northern Sweden reveals subregional genetic differences," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-18, September.
    3. Estavoyer, Maxime & François, Olivier, 2022. "Theoretical analysis of principal components in an umbrella model of intraspecific evolution," Theoretical Population Biology, Elsevier, vol. 148(C), pages 11-21.
    4. Felsenstein, Joseph, 2015. "Covariation of gene frequencies in a stepping-stone lattice of populations," Theoretical Population Biology, Elsevier, vol. 100(C), pages 88-97.
    5. Yaron Granot & Omri Tal & Saharon Rosset & Karl Skorecki, 2016. "On the Apportionment of Population Structure," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-24, August.
    6. Hyosik Jang & Ian M Ehrenreich, 2012. "Genome-Wide Characterization of Genetic Variation in the Unicellular, Green Alga Chlamydomonas reinhardtii," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    7. Mathieu Gautier & Denis Laloë & Katayoun Moazami-Goudarzi, 2010. "Insights into the Genetic History of French Cattle from Dense SNP Data on 47 Worldwide Breeds," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-11, September.
    8. Xiaofeng Cai & Xuepeng Sun & Chenxi Xu & Honghe Sun & Xiaoli Wang & Chenhui Ge & Zhonghua Zhang & Quanxi Wang & Zhangjun Fei & Chen Jiao & Quanhua Wang, 2021. "Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Lee, Anthony J. & Hibbs, Courtney & Wright, Margaret J. & Martin, Nicholas G. & Keller, Matthew C. & Zietsch, Brendan P., 2017. "Assessing the accuracy of perceptions of intelligence based on heritable facial features," Intelligence, Elsevier, vol. 64(C), pages 1-8.
    10. Thompson Katherine L. & Linnen Catherine R. & Kubatko Laura, 2016. "Tree-based quantitative trait mapping in the presence of external covariates," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(6), pages 473-490, December.
    11. Matthieu Bouaziz & Caroline Paccard & Mickael Guedj & Christophe Ambroise, 2012. "SHIPS: Spectral Hierarchical Clustering for the Inference of Population Structure in Genetic Studies," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-17, October.
    12. Jacobo Pardo-Seco & Alberto Gómez-Carballa & Jorge Amigo & Federico Martinón-Torres & Antonio Salas, 2014. "A Genome-Wide Study of Modern-Day Tuscans: Revisiting Herodotus's Theory on the Origin of the Etruscans," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-11, September.
    13. Andrey V Khrunin & Denis V Khokhrin & Irina N Filippova & Tõnu Esko & Mari Nelis & Natalia A Bebyakova & Natalia L Bolotova & Janis Klovins & Liene Nikitina-Zake & Karola Rehnström & Samuli Ripatti & , 2013. "A Genome-Wide Analysis of Populations from European Russia Reveals a New Pole of Genetic Diversity in Northern Europe," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    14. Ilja M Nolte & Chris Wallace & Stephen J Newhouse & Daryl Waggott & Jingyuan Fu & Nicole Soranzo & Rhian Gwilliam & Panos Deloukas & Irina Savelieva & Dongling Zheng & Chrysoula Dalageorgou & Martin F, 2009. "Common Genetic Variation Near the Phospholamban Gene Is Associated with Cardiac Repolarisation: Meta-Analysis of Three Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-10, July.
    15. Hoicheong Siu & Li Jin & Momiao Xiong, 2012. "Manifold Learning for Human Population Structure Studies," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-18, January.
    16. Elodie Persyn & Richard Redon & Lise Bellanger & Christian Dina, 2018. "The impact of a fine-scale population stratification on rare variant association test results," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    17. Andre Krumel Portella & Afroditi Papantoni & Catherine Paquet & Spencer Moore & Keri Shiels Rosch & Stewart Mostofsky & Richard S Lee & Kimberly R Smith & Robert Levitan & Patricia Pelufo Silveira & S, 2020. "Predicted DRD4 prefrontal gene expression moderates snack intake and stress perception in response to the environment in adolescents," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-20, June.
    18. Pierre Luisi & Angelina García & Juan Manuel Berros & Josefina M B Motti & Darío A Demarchi & Emma Alfaro & Eliana Aquilano & Carina Argüelles & Sergio Avena & Graciela Bailliet & Julieta Beltramo & C, 2020. "Fine-scale genomic analyses of admixed individuals reveal unrecognized genetic ancestry components in Argentina," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-30, July.
    19. Peña-Malavera Andrea & Bruno Cecilia & Balzarini Monica & Fernandez Elmer, 2014. "Comparison of algorithms to infer genetic population structure from unlinked molecular markers," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(4), pages 1-12, August.
    20. Edoardo Saccenti & Marieke E. Timmerman, 2017. "Considering Horn’s Parallel Analysis from a Random Matrix Theory Point of View," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 186-209, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0200486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.